Origin and morphology of nerve fibers the aganglionic colon of the lethal spotted (ls/ls) mutant mouse

The lethal spotted mutant mouse (ls/ls) develops congenital megacolon because of the absence of ganglia in the terminal colon. This aganglionosis results from a failure of neural crest cells to colonize this area during fetal life. We have postulated that the microenvironment of the aganglionic segm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 1987-03, Vol.257 (2), p.237-252
Hauptverfasser: Payette, Robert F., Tennyson, Virginia M., Pham, Tuan Duc, Mawe, Gary M., Pomeranz, Howard D., Rothman, Taube P., Gershon, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lethal spotted mutant mouse (ls/ls) develops congenital megacolon because of the absence of ganglia in the terminal colon. This aganglionosis results from a failure of neural crest cells to colonize this area during fetal life. We have postulated that the microenvironment of the aganglionic segment of bowel is abnormal. Our hypothesis suggests that this abnormal enteric microenvironment fosters the sprouting of neuritic processes. We further propose that neural and glial precursors cease to migrate once they have extended their definitive processes. As a result, the area distal to the site where neurite extension is favored does not become colonized by neural or glial precursors. A prediction of this hypothesis is that the aganglionic tissue should be innervated by axons from neurons located both in the more proximal ganglionated bowel and in ganglia located outside the gut. Neurons and their processes in control and ls/ls terminal gut were located by the histochemical demonstration of acetylcholinesterase (AChE) activity and their structure was classified as intrinsic (enteric) or extrinsic in type by electron microscopy. In ls/ls mice the submucosal plexus was much more severely affected than the myenteric plexus. No submucosal ganglia were found within 30 mm of the anus. In contrast, myenteric ganglia extended to within 4 mm of the anus on the mesenteric side of the gut and to within 15 mm on the antimesenteric side. Rostral to the areas that were absolutely aganglionic, both plexuses were hypoganglionic, especially the submucosal plexus, which was hypoganglionic throughout the entire colon. Both the aganglionic and caudal hypoganglionic zones of the ls/ls bowel were penetrated by large nerve trunks that had the ultrastructural characteristics of extra‐enteric peripheral nerve. Unusual ganglia, outside the enteric musculature in the adventitia of the colon, were connected to these trunks. The location of the cell bodies of origin of the nerve fibers in the terminal colon of control mice and in the aganglionic segment of the bowel in ls/ls mice was determined by following the retrograde transport of tracers injected as close as possible to the anus. An extrinsic innervation originating from the inferior mesenteric ganglion and dorsal root ganglia (L6‐S1) was found in both types of animal. In control but not ls/ls mice retrograde labeling was also observed in the sacral parasympathetic nucleus of the spinal cord. In addition, neuritic processes were t
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.902570209