Molecular diversity of HLA-DQ. DQ alpha and beta chain isoelectric point differences and their relation to serologically defined HLA-DQ allospecificities

HLA-DQ molecules were isolated from a panel of HLA-DR-DQ homozygous cell lines, partially of consanguineous origin, derived by the use of monoclonal antibody SPV-L3, and subsequently analyzed by gel electrophoretic techniques. It is demonstrated that both the DQ alpha and beta chain exhibit an exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunogenetics (New York) 1987, Vol.25 (5), p.305-312
Hauptverfasser: BONTROP, R. E, BAAS, E. J, OTTING, N, SCHREUDER, G. M. T, GIPHART, M. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HLA-DQ molecules were isolated from a panel of HLA-DR-DQ homozygous cell lines, partially of consanguineous origin, derived by the use of monoclonal antibody SPV-L3, and subsequently analyzed by gel electrophoretic techniques. It is demonstrated that both the DQ alpha and beta chain exhibit an extensive isoelectric point polymorphism. Within a panel of 29 B-cell lines tested, at least 5 distinct alpha and 6 distinct DQ beta chain gene products were observed. Of the 30 theoretically possible DQ alpha-beta dimers, only 10 could be identified within the panel: 5 different dimers are associated with the DQw1 allospecificity; HLA-DQw2 and -DQw3 are associated with 2 types of dimers, whereas another DQ alpha-beta combination was expressed by a cell line with a so-called DQ-blank specificity. The relation between the specificities 2B3 and TA10 appeared to be complicated as far as DQ beta chain isoelectric point differences are concerned: monoclonal antibody IIB3 seems to be reactive with four distinct DQ beta chain alleles whereas monoclonal antibody TA10 only reacted with one type of DQ beta chain. These results suggest that the polymorphic DQ alpha and beta chains may both contribute to the definition of the HLA-DQ allospecificity. A particular DQ beta chain was present in two types of HLA-DQw1 molecules, as well as in one type of HLA-DQw2 and -DQw3 (2B3 positive) molecule, and formed dimers with electrophoretic distinct DQ alpha chains. On the other hand, HLA-DQw2 molecules isolated from HLA-DR3-positive cells and one type of HLA-DQw3 (TA10 positive) molecule were found to be constructed of identical alpha chains but appeared to differ in the composition of their DQ beta chain gene products. The implications of these findings will be discussed.
ISSN:0093-7711
1432-1211
DOI:10.1007/BF00404423