Involvement of dopamine receptor subtypes in dopaminergic modulation of aldosterone secretion in rats
The postulation that dopamine (DA) may tonically inhibit aldosterone (ALDO) secretion has arisen from the finding that metoclopramide, a non-selective DA receptor antagonist with prominent non-dopaminergic actions, stimulates ALDO secretion. Experiments were performed to determine: (a.) the ability...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 1987-04, Vol.40 (15), p.1499-1506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The postulation that dopamine (DA) may tonically inhibit aldosterone (ALDO) secretion has arisen from the finding that metoclopramide, a non-selective DA receptor antagonist with prominent non-dopaminergic actions, stimulates ALDO secretion. Experiments were performed to determine: (a.) the ability of several non-specific and subtype-specific DA receptor antagonists to stimulate ALDO secretion, (b.) the subtype DA receptor involved in regulating ALDO secretion, and (c.) if ALDO responses were associated with changes in plasma Na
+(pNa), K
+(pK), or osmolality (pOsm). Blood samples were withdrawn from carotid arterial catherers in conscious, fasted male Sprague-Dawley rats before and following intra-arterial administration of lactated Ringer's placebo, furosemide (10 mg/kg), or one of several DA receptor antagonists. Furosemide stimulated ALDO, decreased pK, and left pNa and pOsm unchanged. The non-selective DA receptor antagonists metoclopramide (0.2, 0.6 mg/kg), rs-sulpiride (0.2 mg/ kg), and haloperidol (0.1 mg/kg), and the DA-2 receptor antagonists domperidone (0.1 mg/kg) and s-sulpiride (0.1 mg/ kg) each stimulated ALDO, and left pNa, pK, and pOsm unchanged. Conversely, the DA-1 receptor antagonists SCH23390 (0.03, 0.1 mg/kg) and r-sulpiride (0.1 mg/kg) failed to stimulate ALDO, and left pNa, pK, and pOsm unaltered. These studies suggest that ALDO secretion in rats is modulated by a mechanism involving DA-2, but not DA-1 subtype receptors, and that the ALDO responses to DA receptor antagonism are independent of changes in pNa, pK, and pOsm. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/0024-3205(87)90382-1 |