Transglutaminase C in cerebellar granule neurons: Regulation and localization of substrate cross-linking

Covalent cross-linking of cell surface proteins by the calcium-dependent enzyme transglutaminase C may be implicated in cell-cell interactions and growth regulation. We demonstrate the presence of the enzyme in rat cerebellar cortex during postnatal development. Transglutaminase C was induced in cer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1995-04, Vol.65 (4), p.1063-1076
Hauptverfasser: Perry, M.J.M., Mahoney, S.-A., Haynes, L.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent cross-linking of cell surface proteins by the calcium-dependent enzyme transglutaminase C may be implicated in cell-cell interactions and growth regulation. We demonstrate the presence of the enzyme in rat cerebellar cortex during postnatal development. Transglutaminase C was induced in cerebellar granule neurons in culture by retinoic acid, dibutyryl- and 8-bromo-cyclic AMP analogues and by cultivation on a biomatrix substratum. Cyclic AMP analogues stimulated transglutaminase activity in protein synthesis-dependent and -independent phases. The enzyme was distributed at focal adhesion sites on the axon. By calcium-dependent covalent incorporation of the primary amine acceptor substrate, 5-(biotinamido)pentylamine, an increase in the Ca 2+-dependent cross-linking of at least 11 substrate proteins in the presence of retinoic acid and dibutyryl-cyclic AMP was detected. Of these substrates, a subset was labelled on the surface of living granule neurons. A low-molecular-weight substrate, p18, was tentatively identified as the retinoic acid-inducible neurite-promoting factor, midkine. Transglutaminase-mediated amine incorporation, midkine and isopeptide cross-links were co-localized to axonal adhesion sites. The results provide evidence of transglutaminase C-catalysed protein cross-linking activity in cerebellar granule neurons and its possible implication in cell-substratum interactions.
ISSN:0306-4522
1873-7544
DOI:10.1016/0306-4522(94)00556-K