Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells
The rod and cone transducins are specific G proteins originally thought to be present only in photoreceptor cells of the vertebrate retina. Transducins convert light stimulation of photoreceptor opsins into activation of cyclic GMP phosphodiesterase (reviewed in refs. 5-7). A transducin-like G prote...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1995-07, Vol.376 (6535), p.80-85 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rod and cone transducins are specific G proteins originally thought to be present only in photoreceptor cells of the vertebrate retina. Transducins convert light stimulation of photoreceptor opsins into activation of cyclic GMP phosphodiesterase (reviewed in refs. 5-7). A transducin-like G protein, gustducin, has been identified and cloned from rat taste cells. We report here that rod transducin is also present in vertebrate taste cells, where it specifically activates a phosphodiesterase isolated from taste tissue. Furthermore, the bitter compound denatonium in the presence of taste-cell membranes activates transducin but not Gi. A peptide that competitively inhibits rhodopsin activation of transducin also blocks taste-cell membrane activation of transducin, arguing for the involvement of a seven-transmembrane-helix G-protein-coupled receptor. These results suggest that rod transducin transduces bitter taste by coupling taste receptor(s) to taste-cell phosphodiesterase. Phosphodieterase-mediated degradation of cyclic nucleotides may lead to taste-cell depolarization through the recently identified cyclic-nucleotide-suppressible conductance. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/376080a0 |