Current triton X-100 treatments do not allow a complete plasminogen activator extraction from developing nervous tissue

Determinations of plasminogen activator (PA) activity are usually performed in Triton X-100-treated tissue homogenates or crude membrane fractions. Such preparations usually involve a single Triton X-100 treatment. In the present paper we describe the pattern of variability of PA activity measured i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 1995-02, Vol.20 (2), p.137-142
Hauptverfasser: PEREYRA-ALFONSO, S, SCICOLONE, G, FISZER DE PLAZAS, S, SAAVEDRA, J. P, FLORES, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determinations of plasminogen activator (PA) activity are usually performed in Triton X-100-treated tissue homogenates or crude membrane fractions. Such preparations usually involve a single Triton X-100 treatment. In the present paper we describe the pattern of variability of PA activity measured in different fractions obtained from the developing chick CNS by a repetitive procedure of Triton X-100 treatment and ultracentrifugation. To further characterize this PA activity we have also performed zymographic analyses during the embryonic development and the early postnatal life. Our results show that: a) a single Triton X-100 treatment does not completely extract the enzyme and this lead to an underestimation of the total PA activity; b) the PA activity is associated with the particulate component of the total tissue homogenate requiring its complete solubilization more drastic Triton X-100 treatments; c) better estimations of total and specific activities are obtained by using soluble fractions derived by ultracentrifugation from Triton X-100-treated membrane fractions; d) the developing chick optic lobe expresses only one kind of PA molecule along the entire development; e) the level of PA activity vary characteristically during the ontogeny and the early postnatal life indicating the existence of a developmentally regulated mechanism of PA expression.
ISSN:0364-3190
1573-6903
DOI:10.1007/BF00970537