Molecular Cloning of the Isoquinoline 1-Oxidoreductase Genes from Pseudomonas diminuta 7, Structural Analysis of IorA and IorB, and Sequence Comparisons with Other Molybdenum-containing Hydroxylases

The iorA and iorB genes from the isoquinoline-degrading bacterium Pseudomonas diminuta 7, encoding the heterodimeric molybdo-iron-sulfur-protein isoquinoline 1-oxidoreductase, were cloned and sequenced. The deduced amino acid sequences IorA and IorB showed homologies (i) to the small (γ) and large (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-06, Vol.270 (24), p.14420-14429
Hauptverfasser: Lehmann, Martin, Tshisuaka, Barbara, Fetzner, Susanne, Lingens, Franz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The iorA and iorB genes from the isoquinoline-degrading bacterium Pseudomonas diminuta 7, encoding the heterodimeric molybdo-iron-sulfur-protein isoquinoline 1-oxidoreductase, were cloned and sequenced. The deduced amino acid sequences IorA and IorB showed homologies (i) to the small (γ) and large (α) subunits of complex molybdenum-containing hydroxylases (αβγ/α2β2γ2) possessing a pterin molybdenum cofactor with a monooxo-monosulfido-type molybdenum center, (ii) to the N- and C-terminal regions of aldehyde oxidoreductase from Desulfovibrio gigas, and (iii) to the N- and C-terminal domains of eucaryotic xanthine dehydrogenases, respectively. The closest similarity to IorB was shown by aldehyde dehydrogenase (Adh) from the acetic acid bacterium Acetobacter polyoxogenes. Five conserved domains of IorB were identified by multiple sequence alignments. Whereas IorB and Adh showed an identical sequential arrangement of these conserved domains, in all other molybdenum-containing hydroxylases the relative position of “domain A” differed. IorA contained eight conserved cysteine residues. The amino acid pattern harboring the four cysteine residues proposed to ligate the Fe/S I cluster was homologous to the consensus binding site of bacterial and chloroplast-type [2Fe-2S] ferredoxins, whereas the pattern including the four cysteines assumed to ligate the Fe/S II center showed no similarities to any described [2Fe-2S] binding motif. The N-terminal region of IorB comprised a putative signal peptide similar to typical leader peptides, indicating that isoquinoline 1-oxidoreductase is associated with the cell membrane.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.24.14420