Structural Definition of Early Lysine and Histidine Adduction Chemistry of 4-Hydroxynonenal
The lipid peroxidation product trans-4-hydroxy-2-nonenal (HNE) has been implicated in the covalent modification of low-density lipoproteins (LDL) thought to contribute to the over-accumulation of LDL in the arterial wall in the initial stages of atherosclerosis. Proposals for the exact structures of...
Gespeichert in:
Veröffentlicht in: | Chemical research in toxicology 1995-03, Vol.8 (2), p.284-291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lipid peroxidation product trans-4-hydroxy-2-nonenal (HNE) has been implicated in the covalent modification of low-density lipoproteins (LDL) thought to contribute to the over-accumulation of LDL in the arterial wall in the initial stages of atherosclerosis. Proposals for the exact structures of "early" protein side-chain modifications until now have been based on indirect evidence. In this paper, the structures of first-formed His- and Lys-based adducts were elucidated by correlating NMR spectral properties with those obtained on models with reduced chiral center content, in some cases following hydride reduction. In this manner, we could confirm unambiguously the structure of a HNE-His imidazole(N tau) Michael adduct, stabilized as a cyclic hemiacetal and isolated from a neutral aqueous 1:1 stoichiometry reaction mixture. In the case of Lys/amine reactivity, where an excess of amine is needed to avert HNE aldol condensation, the predominance of a 1:1 Michael adduct in homogeneous aqueous solution and a 1:2 Michael-Schiff base adduct under two-phase aqueous-organic conditions could be verified by isolation of the respective borohydride-reduced forms. The 1:2 adduct, shown to exist as the cyclic hemiaminal, could represent a stable lysine-based cross-link in certain protein microenvironments. |
---|---|
ISSN: | 0893-228X 1520-5010 |
DOI: | 10.1021/tx00044a014 |