Increased levels of GAP-43 protein in schizophrenic brain tissues demonstrated by a novel immunodetection method

Studies on the molecular basis of neurological and psychiatric disorders often rely on the precise determination of specific proteins in brain tissues. In this study, we have developed a method for measuring the levels of the neural-specific growth-associated protein, GAP-43, in human postmortem bra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and chemical neuropathology 1995-01, Vol.24 (1), p.1-11
Hauptverfasser: Sower, A C, Bird, E D, Perrone-Bizzozero, N I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies on the molecular basis of neurological and psychiatric disorders often rely on the precise determination of specific proteins in brain tissues. In this study, we have developed a method for measuring the levels of the neural-specific growth-associated protein, GAP-43, in human postmortem brain specimens. This rapid and quantitative method is based on immunodetection procedures. Briefly, synaptosomal plasma membranes (SPMs) are deposited onto polyvinylidene difluoride (PVDF) membranes via a dot-blotting apparatus, followed by specific GAP-43 detection using a monospecific polyclonal antibody. Overall, the dot-blot procedure provided several advantages over Western blots and one-dimensional and two-dimensional polyacrylamide gels. The assays were more sensitive, reproducible, and allowed the rapid and simultaneous determination of multiple samples. Using this technique, we examined the levels of the GAP-43 protein in Brodmann's areas 17, 20, and 10 of schizophrenic and age-, sex-, and postmortem interval (PMI) matched controls. These studies revealed an increase in the levels of GAP-43 in visual association and frontal cortices (areas 20 and 10) of schizophrenic brains. Given the relationship of GAP-43 expression with the establishment and remodeling of neural connections, our results support the hypothesis that schizophrenia is associated with a perturbed organization of synaptic connections in associative areas of the human brain.
ISSN:1044-7393
DOI:10.1007/bf03160108