Triplet-state quenching in complexes between Zn-cytochrome c and cytochrome oxidase or its CuA domain

The quenching of the triplet state of Zn-cytochrome c in electrostatic complexes with cytochrome oxidase and its soluble CuA domain has been studied by laser flash photolysis. The triplet state of free Zn-cytochrome c decayed with a rate of about 200 s-1. With the oxidase, biphasic decay with rate c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical chemistry 1995-04, Vol.54 (2), p.191-197
Hauptverfasser: Brzezinski, P, Sundahl, M, Adelroth, P, Wilson, M T, el-Agez, B, Wittung, P, Malmström, B G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quenching of the triplet state of Zn-cytochrome c in electrostatic complexes with cytochrome oxidase and its soluble CuA domain has been studied by laser flash photolysis. The triplet state of free Zn-cytochrome c decayed with a rate of about 200 s-1. With the oxidase, biphasic decay with rate constants of 2 x 10(5) and 2 x 10(3) s-1, respectively, was observed. At high ionic strength (I = 0.2) the decay was the same as with free Zn-cytochrome c. The quenching was also eliminated by reduction of the oxidase. The decay rate in the complex with the CuA domain was 4 x 10(4) s-1. The results are interpreted in terms of rapid electron transfer to CuA and a slower one to cytochrome a. No electron transfer products were detected, because the backward reaction is faster than the forward one. This can be explained by the high driving force (1.1 eV) for the forward electron transfer, taking the system into the inverted Marcus region. The distance in the electrostatic complex between cytochrome c and the electron acceptor, presumed to be CuA, is calculated to be 16 A.
ISSN:0301-4622
DOI:10.1016/0301-4622(94)00128-7