Apparent Intramolecular Acyl Migration and Hydrolysis of Furosemide Glucuronide in Aqueous Solution

The stability of furosemide glucuronide (FG) was investigated in buffer solutions ranging from pH 1 through 10. This glucuronic acid conjugate was the major metabolite of furosemide (F) excreted in human urine. FG, obtained by extraction from human urine, was purified by ion-exchange chromatography....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 1995/01/15, Vol.18(1), pp.134-139
Hauptverfasser: SEKIKAWA, Hitoshi, YAGI, Naomi, LIN, Emil T., BENET, Leslie Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability of furosemide glucuronide (FG) was investigated in buffer solutions ranging from pH 1 through 10. This glucuronic acid conjugate was the major metabolite of furosemide (F) excreted in human urine. FG, obtained by extraction from human urine, was purified by ion-exchange chromatography. The concentration of FG, acyl migration isomers of FG (FG-iso), and F were determined simultaneously with an HPLC method that included fluorescence detection and gradient elution. FG was found to be unstable in highly acidic and in neutral to alkaline solutions. Hydrogen ion and hydroxy ion catalyzed the hydrolysis of FG below pH 2.8 and above pH 5.6, respectively. Above pH 3.7, FG instability led to the formation of eight FG-iso compounds. Though β-glucuronidase cleaved FG, the FG-iso compounds were resistant to the enzyme. The half-life of FG in a buffer solution at pH 7.4 and 37°C was 4.4 h. The maximum stability of FG (half-life about 62 d) occurred at approximately pH 3.2. Below pH 3.7, acyl migration products of FG were not detected. Instead, the hydrolysis of FG to F and glucuronic acid was followed by the formation of 4-chloro-5-sulfamoylanthranilic acid (CSA), a secondary product in acidic media.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.18.134