Relation between lipolysis and glycolysis during ischemia in the isolated rat heart

The relation between lipolysis and glycolysis during ischemia was investigated in isolated perfused rat hearts. In hearts perfused with 11 mM glucose, ischemia caused a marked increase of glycerol release from 10 to 33 nmol/g wt weight/min. Substrate-free perfusion induced an initial stimulation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic research in cardiology 1986-09, Vol.81 (5), p.454-464
Hauptverfasser: TRACH, V, BUSCHMANS-DENKEL, E, SCHAPER, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relation between lipolysis and glycolysis during ischemia was investigated in isolated perfused rat hearts. In hearts perfused with 11 mM glucose, ischemia caused a marked increase of glycerol release from 10 to 33 nmol/g wt weight/min. Substrate-free perfusion induced an initial stimulation of glycerol release, but lipolysis was subsequently reduced to values comparable to normoxic conditions. Neither did perfusion in the presence of acetate (10 mM) and beta-hydroxybutyrate (10 mM) stimulate lipolysis. Inhibition of glycolysis by pyruvate prevented the increase of glycerol release during ischemia. These data suggest a tight link between glycolysis and lipolysis during ischemia which is probably mediated by the availability of glycolytically produced glycerol-3-phosphate for reesterification. In the absence of glycerol-3-phosphate, the lipolysis is regulated by product inhibition. As a consequence, the tissue triglyceride levels after perfusion remained fairly constant in all groups of hearts. The calculated energy loss by the reesterification cycle during ischemia was found to be approximately 2.5% of the total energy production. These data are inconsistent with the assumption that this energy loss contributes significantly to the negative energetic balance of the heart during ischemia. Removal of fatty acids by reesterification may constitute a protective mechanism in order to prevent excessive intracellular accumulation of fatty acids and derivative esters during ischemia.
ISSN:0300-8428
1435-1803
DOI:10.1007/bf01907751