Evaluation of new self‐learning techniques for the generation of criteria for differentiation of wide‐QRS tachycardia in supraventricular tachycardia and ventricular tachycardia

This study presents a comparison of three different methods for differentiating between supraventricular and ventricular tachycardias with wide‐QRS complex. One set of criteria, derived using classical statistical techniques, was compared with two new self‐learning computer techniques: the artificia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cardiology (Mahwah, N.J.) N.J.), 1995-02, Vol.18 (2), p.103-108
Hauptverfasser: Dassen, Willem R.M., Mulleneers, Rob G.A., Smeets, Joep L.R.M., Wellens, Hein J.J., Karthaus, Vincent L.J., Talmon, Jan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a comparison of three different methods for differentiating between supraventricular and ventricular tachycardias with wide‐QRS complex. One set of criteria, derived using classical statistical techniques, was compared with two new self‐learning computer techniques: the artificial neural networks and the induction algorithm approach. By analyzing the results obtained in an independent test set, using these new techniques, the criteria defined by the classical method could be improved.
ISSN:0160-9289
1932-8737
DOI:10.1002/clc.4960180213