Decreased dihydropyridine receptor number in hypertensive rat vascular muscle cells
To further investigate the altered function of Ca2+ channels in vascular muscle cells in hypertension, a novel fluorescently labeled dihydropyridine was used with ultrahigh-sensitivity photometry to study dihydropyridine binding sites on the surface membrane of living vascular muscle cells from stro...
Gespeichert in:
Veröffentlicht in: | Hypertension (Dallas, Tex. 1979) Tex. 1979), 1995-04, Vol.25 (4), p.731-734 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To further investigate the altered function of Ca2+ channels in vascular muscle cells in hypertension, a novel fluorescently labeled dihydropyridine was used with ultrahigh-sensitivity photometry to study dihydropyridine binding sites on the surface membrane of living vascular muscle cells from stroke-prone spontaneously hypertensive rats and their normotensive controls. Fluorescent nitrobenzoxadiazol-6-dihydropyridine in concentrations of 1 to 100 nmol/L bound specifically to vascular muscle cells' Ca2+ channels, and was displaced by the unlabeled dihydropyridine analogue or nisoldipine (10 mumol/L). Stroke-prone spontaneously hypertensive rat vascular muscle cells showed significantly decreased binding of nitrobenzoxadiazol-6-dihydropyridine compared with normotensive National Institutes of Health rats. Decreased binding of dihydropyridine by vascular muscle cells from stroke-prone spontaneously hypertensive rats (cells that in other studies show increased Ca2+ channel function) indicates a change in channel regulation that is possibly due to a deficiency in the inactivation mechanism, consistent with our earlier electrophysiological studies reporting deficiencies in Ca(2+)-dependent inactivation in genetic hypertension. These data demonstrate decreased numbers of localized sites of dihydropyridine binding on the sarcolemma of living vascular muscle cells, and support the hypothesis that Ca2+ channel alterations may significantly contribute to the molecular etiology of genetic hypertension. |
---|---|
ISSN: | 0194-911X 1524-4563 |
DOI: | 10.1161/01.HYP.25.4.731 |