Calreticulin, an Antithrombotic Agent Which Binds to Vitamin K-dependent Coagulation Factors, Stimulates Endothelial Nitric Oxide Production, and Limits Thrombosis in Canine Coronary Arteries (∗)
Coagulation Factor IX/IXa has been shown to bind to cellular surfaces, and Factor IXa expresses its procoagulant activity by assembling into the intrinsic Factor X activating complex (Factors IXa/VIIIa/X), which also forms on membrane surfaces. This led us to identify cellular proteins which bind Fa...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1995-04, Vol.270 (14), p.8179-8187 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coagulation Factor IX/IXa has been shown to bind to cellular surfaces, and Factor IXa expresses its procoagulant activity by assembling into the intrinsic Factor X activating complex (Factors IXa/VIIIa/X), which also forms on membrane surfaces. This led us to identify cellular proteins which bind Factor IX/IXa; an ≈55-kDa polypeptide was purified to homogeneity from bovine lung extracts based on its capacity to bind 125I-Factor IX in a dose-dependent and saturable manner. From protein sequence data of the amino terminus and internal peptides, the ≈55-kDa polypeptide was identified as calreticulin, a previously identified intracellular calcium-binding protein. Recombinant calreticulin bound vitamin K-dependent coagulation factors, 125I-Factor IX, 125I-Factor X, and 125I-prothrombin (Kd values of ≈2.7, 3.2, and 8.3 nM, respectively), via interaction with its C-domain, although it did not affect the coagulant properties of these proteins. 125I-Calreticulin also bound to endothelial cells in vitro (Kd≈ 7.4 nM), and mouse infusion studies showed an initial rapid phase of clearance in which calreticulin could be localized on the vascular endothelium. Exposure of endothelial cells to calreticulin led to dose-dependent, immediate, and sustained increase in the production of nitric oxide, as measured using a porphyrinic microsensor. In a canine electrically induced thrombosis model, intracoronary infusion of calreticulin (n = 7) prevented occlusion of the left circumflex coronary artery in a dose-dependent manner compared with vehicle-treated controls (n = 5). These results indicate that calreticulin interacts with the endothelium to stimulate release of nitric oxide and inhibit clot formation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.270.14.8179 |