Involvement of N-myristoylation in monoclonal antibody recognition sites on chimeric G protein alpha subunits
Monoclonal antibody, LAS-2, directed against the alpha subunit of transducin (Gt alpha), inhibited Gt beta gamma-dependent, pertussis toxin-catalyzed ADP ribosylation of Gt alpha and was specific for Gt alpha. Immunoblotting studies on proteolytic fragments of Gt alpha were consistent with an amino-...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1995-03, Vol.270 (12), p.6436-6439 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monoclonal antibody, LAS-2, directed against the alpha subunit of transducin (Gt alpha), inhibited Gt beta gamma-dependent, pertussis toxin-catalyzed ADP ribosylation of Gt alpha and was specific for Gt alpha. Immunoblotting studies on proteolytic fragments of Gt alpha were consistent with an amino-terminal epitope. To define the antibody recognition site, recombinant Gt alpha was synthesized in Escherichia coli cotransfected with or without yeast N-myristoyl-transferase. Amino-terminal fatty acylation of Gt alpha, verified by use of radiolabeled fatty acid, was required for immunoreactivity. LAS-2 did not react with a chimeric protein consisting of residues 1-9 of Gt alpha and the remainder Go alpha, regardless of its myristoylation. Immunoreactivity was observed when amino acids 1-17 of Gt alpha were present in a Go alpha chimera and the protein was amino-terminally myristoylated; there was no reactivity without myristoylation. It appears that the LAS-2 epitope requires both Gt alpha-specific sequence in amino acids 10-17 and a fatty acyl group in proximity to these residues. These results are consistent with the hypothesis that the myristoyl group is essential for protein structure; conceivably it "folds back" on and stabilizes the amino-terminal structure of Gt alpha as opposed to protruding from an amino-terminal alpha-helix and serving as an amino-terminal membrane anchor. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.270.12.6436 |