Human IL-1 beta processing and secretion in recombinant baculovirus- infected Sf9 cells is blocked by the cowpox virus serpin crmA

Biologically active, mature IL-1 beta (mIL-1 beta) is released from activated monocytes after proteolytic processing from an inactive precursor (pIL-1 beta). IL-1 beta converting enzyme (ICE), the first member of a newly discovered family of cysteine proteinases, is required for this processing even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1995-03, Vol.154 (5), p.2321-2332
Hauptverfasser: Howard, AD, Palyha, OC, Griffin, PR, Peterson, EP, Lenny, AB, Ding, GJ, Pickup, DJ, Thornberry, NA, Schmidt, JA, Tocci, MJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biologically active, mature IL-1 beta (mIL-1 beta) is released from activated monocytes after proteolytic processing from an inactive precursor (pIL-1 beta). IL-1 beta converting enzyme (ICE), the first member of a newly discovered family of cysteine proteinases, is required for this processing event. The cleaved cytokine is released from monocytes by an unknown mechanism which does not employ a standard hydrophobic signal sequence. As in mammalian fibroblasts, insect Sf9 cells do not normally process or secrete human IL-1 beta. The expression of active ICE enables Sf9 cells to process 31-kDa pIL-1 beta correctly at Asp27 and Asp116, and to export 17.5-kDa mIL-1 beta. The recombinant heterodimeric human enzyme purified from Sf9 cells possesses a sp. act. of 2.9 +/- 0.5 x 10(6) U/mg and is indistinguishable from native ICE with regard to its subunit composition and catalytic properties. In this system, co-expression of the cowpox virus crmA gene, an extremely potent serpin inhibitor of ICE (Ki < 7 pM), inhibits ICE activation completely and blocks pIL-1 beta processing and mIL-1 beta secretion by approximately 95%. The results indicate that ICE, in addition to its processing function, facilitates the transport of IL-1 beta across the plasma membrane.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.154.5.2321