Mechanism of the negative inotropic effect of thiopental in isolated ferret ventricular myocardium

Thiopental's myocardial depressant effects are well known and most likely involve some alteration in intracellular Ca2+ homeostasis. The aim of this study was to investigate the mechanisms of thiopental's negative inotropic effects and its underlying mechanism in isolated ferret ventricula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesiology (Philadelphia) 1995-02, Vol.82 (2), p.436-450
Hauptverfasser: HOUSMANS, P. R, KUDSIOGLU, S. T, BINGHAM, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thiopental's myocardial depressant effects are well known and most likely involve some alteration in intracellular Ca2+ homeostasis. The aim of this study was to investigate the mechanisms of thiopental's negative inotropic effects and its underlying mechanism in isolated ferret ventricular myocardium (which shows physiologic characteristics similar to human ventricular myocardium), and in frog ventricular myocardium, in which Ca2+ ions for myofibrillar activation are derived almost entirely from transsarcolemmal influx. The authors analyzed the effects of thiopental after beta-adrenoceptor blockade on variables of contractility and relaxation, and on the free intracellular Ca2+ transient detected with the Ca(2+)-regulated photoprotein aequorin. Thiopental's effects also were evaluated in ferret right ventricular papillary muscles in which the sarcoplasmic reticulum (SR) function was impaired by ryanodine and in frog ventricular strips with little or no SR function. At concentration > or = 10(-4) M, which is in the high range of the clinically encountered free plasma thiopental concentrations, thiopental decreased contractility and the amplitude of the intracellular Ca2+ transient. At equal peak force, peak aequorin luminescence in 10(-4) M thiopental and [Ca2+]0 > 2.25 mM was slightly smaller than that in control conditions at [Ca2+]o = 2.25 mM. This indicates that thiopental causes a small increase in myofibrillar Ca2+ sensitivity. After inactivation of sarcoplasmic reticulum Ca2+ release with 10(-6) M ryanodine, a condition in which myofibrillar activation depends almost exclusively on transsarcolemmal Ca2+ influx, thiopental caused a further decrease in contractility and in the amplitude of the intracellular Ca2+ transient, and thiopental's relative negative inotropic effect was not different from that in control muscles not exposed to ryanodine. Thiopental, > or = 10(-4) M, decreased contractility in frog ventricular myocardium. These findings indicate that the direct negative inotropic effect of thiopental results from a decrease in intracellular Ca2+ availability. At least part of thiopental's action is caused by inhibition of transsarcolemmal Ca2+ influx. These effects become apparent at concentrations routinely present during intravenous induction with thiopental.
ISSN:0003-3022
1528-1175
DOI:10.1097/00000542-199502000-00014