The ASTROCULTURE(TM) flight experiment series, validating technologies for growing plants in space
A flight experiment, ASTROCULTURE(TM)-1 (ASC-1), to evaluate the operational characteristics and hardware performance of a porous tube nutrient delivery system (PTNDS) was flown on STS-50 as part of the U.S. Microgravity Laboratory-1 mission, 25 June to 9 July, 1992. This experiment is the first in...
Gespeichert in:
Veröffentlicht in: | Advances in space research 1994-11, Vol.14 (11), p.29-37 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A flight experiment, ASTROCULTURE(TM)-1 (ASC-1), to evaluate the operational characteristics and hardware performance of a porous tube nutrient delivery system (PTNDS) was flown on STS-50 as part of the U.S. Microgravity Laboratory-1 mission, 25 June to 9 July, 1992. This experiment is the first in a series of planned ASTROCULTURE(TM) flights to validate the performance of subsystems required to grow plants in microgravity environments. Results indicated that the PTNDS was capable of supplying water and nutrients to plants in microgravity and that its performance was similar in microgravity to that in 1g on Earth. The data demonstrated that water transfer rates through a rooting matrix are a function of pore size of the tubes, the degree of negative pressure on the 'supply' fluid, and the pressure differential between the 'supply' and 'recovery' fluid loops. A slightly greater transfer rate was seen in microgravity than in 1g, but differences were likely related to the presence of hydrostatic pressure effects at 1g. Thus, this system can be used to support plant growth in microgravity or in partial gravity as on a lunar or Mars base. Additional subsystems to be evaluated in the ASTROCULTURE(TM) flight series of experiments include lighting, humidity control and condensate recovery, temperature control, nutrient composition control, CO2 and O2 control, and gaseous contaminant control. |
---|---|
ISSN: | 0273-1177 |
DOI: | 10.1016/0273-1177(94)90276-3 |