Kinetic studies on the activation of pyrophosphate-dependent phosphofructokinase from mung bean by fructose 2,6-bisphosphate and related compounds

Pyrophosphate-dependent phosphofructokinase (PPi-PFK) was purified from the mung bean Phaseolus aureus. The enzyme is activated by fructose 2,6-bisphosphate at nanomolar concentrations. The enzyme exhibits Michaelis-Menten kinetics, and the reaction mechanism, deduced from initial velocity studies i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1986-08, Vol.25 (16), p.4682-4687
Hauptverfasser: Bertagnolli, Byron L, Younathan, Ezzat S, Voll, Ronald J, Cook, Paul F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyrophosphate-dependent phosphofructokinase (PPi-PFK) was purified from the mung bean Phaseolus aureus. The enzyme is activated by fructose 2,6-bisphosphate at nanomolar concentrations. The enzyme exhibits Michaelis-Menten kinetics, and the reaction mechanism, deduced from initial velocity studies in the absence of inhibitors as well as product and dead-end inhibition studies, is rapid equilibrium random in the presence and absence of fructose 2,6-bisphosphate. In the direction of fructose 6-phosphate phosphorylation, saturating fructose 2,6-bisphosphate (1 microM) increases V congruent to 9-fold and increases V/KMgPPi and V/KF6P about 30-fold. In the reverse direction (phosphate phosphorylation), the same concentration of activator has little if any effect on V or the Km for inorganic phosphate (Pi) and Mg2+ but does increase V/KFBP about 42-fold. No changes were observed in any of the other rate constants. The binding affinity of fructose 2,6-bisphosphate to all enzyme forms is identical. The activator site of the mung bean PPi-PFK binds fructose 2,6-bisphosphate with a Kact of 30 nM with the 2,5-anhydro-D-glucitol 1,6-bisphosphate (the most effective analogue) 33-fold less tightly. Of the alkanediol bisphosphate series, 1,4-butanediol bisphosphate exhibited the tightest binding (Kact congruent to 3 microM). These and a series of other activating analogues are discussed in relation to the activator site.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00364a034