Thermodynamic and structural aspects of the potential energy surface of simulated water
Relations between the thermodynamics and dynamics of supercooled liquids approaching a glass transition is a topic of considerable interest. The potential energy surface of model liquids has been increasingly studied, since it provides a connection between the configurational component of the partit...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-04, Vol.63 (4 Pt 1), p.041201-041201, Article 041201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Relations between the thermodynamics and dynamics of supercooled liquids approaching a glass transition is a topic of considerable interest. The potential energy surface of model liquids has been increasingly studied, since it provides a connection between the configurational component of the partition function on the one hand, and the system dynamics on the other. This connection is most obvious at low temperatures, where the motion of the system can be partitioned into vibrations within a basin of attraction and infrequent interbasin transitions. In this work, we present a description of the potential energy surface properties of supercooled liquid water. The dynamics of this model have been studied in great detail in recent years. We locate the minima sampled by the liquid by "quenches" from equilibrium configurations generated via molecular dynamics simulations, and then calculate the temperature and density dependence of the basin energy, degeneracy, and shape. The temperature dependence of the energy of the minima is qualitatively similar to simple liquids, but has anomalous density dependence. The unusual density dependence is also reflected in the configurational entropy, the thermodynamic measure of degeneracy. Finally, we study the structure of simulated water at the minima, which provides insight on the progressive tetrahedral ordering of the liquid on cooling. |
---|---|
ISSN: | 1539-3755 1063-651X 1095-3787 |
DOI: | 10.1103/physreve.63.041201 |