Correlated electrons in δ-plutonium within a dynamical mean-field picture

Given the practical importance of metallic plutonium, there is considerable interest in understanding its fundamental properties. Plutonium undergoes a 25 per cent increase in volume when transformed from its α-phase (which is stable below 400 K) to the δ-phase (stable at around 600 K), an effect th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2001-04, Vol.410 (6830), p.793-795
Hauptverfasser: Savrasov, S. Y, Kotliar, G, Abrahams, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the practical importance of metallic plutonium, there is considerable interest in understanding its fundamental properties. Plutonium undergoes a 25 per cent increase in volume when transformed from its α-phase (which is stable below 400 K) to the δ-phase (stable at around 600 K), an effect that is crucial for issues of long-term storage and disposal. It has long been suspected that this unique property is a consequence of the special location of plutonium in the periodic table, on the border between the light and heavy actinides-here, electron wave-particle duality (or itinerant versus localized behaviour) is important. This situation has resisted previous theoretical treatment. Here we report an electronic structure method, based on dynamical mean-field theory, that enables interpolation between the band-like and atomic-like behaviour of the electron. Our approach enables us to study the phase diagram of plutonium, by providing access to the energetics and one-electron spectra of strongly correlated systems. We explain the origin of the volume expansion between the α- and δ-phases, predict the existence of a strong quasiparticle peak near the Fermi level and give a new viewpoint on the physics of plutonium, in which the α- and δ-phases are on opposite sides of the interaction-driven localization-delocalization transition.
ISSN:0028-0836
1476-4687
DOI:10.1038/35071035