Properties of the purified APS-kinase from Escherichia coli and Saccharomyces cerevisiae

Adenylylsulphate kinase (EC 2.7.1.25, ATP:adenylylsulphate 3'-phosphotransferase) has been isolated from Escherichia coli and from Saccharomyces cerevisiae. As major steps of purification, affinity chromatography on Sepharose CL 6B ("blue" or "red") and chromatofocusing on p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 1986-06, Vol.145 (1), p.32-38
Hauptverfasser: Schriek, U, Schwenn, J.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adenylylsulphate kinase (EC 2.7.1.25, ATP:adenylylsulphate 3'-phosphotransferase) has been isolated from Escherichia coli and from Saccharomyces cerevisiae. As major steps of purification, affinity chromatography on Sepharose CL 6B ("blue" or "red") and chromatofocusing on polybuffer PBE 94tm were employed. The proteins were obtained in nearly homogeneous state after five chromatographic steps. The isolated enzymes from both sources appeared predominantly to exist as dimers. Upon reduction of the protein with dithiothreitol, it disintegrated into assumingly identical smaller subunits (E. coli rom Mr 90-85,000 to 45-40,000 and S. cerevisiae from 52-49,500 to 28-29,500). Both forms, dimer and monomer were found catalytically active. Preincubation of the isolated enzyme from either source in the presence of thioredoxin plus DTT, reduced glutathione or DTT increased the activity significantly. Treatment of the enzyme with SH-blocking reagents inactivated the enzyme irreversibly as compared to the inactivation caused by oxidants (2,6-dichlorophenol-indophenol, ferricyanide or oxydized glutathione). This oxidant induced inactivation was less pronounced for the fungal enzyme than for the bacterial protein. The enzyme from E. coli required thioredoxin in order to alleviate the GSSG-induced inactivation.
ISSN:0302-8933
1432-072X
DOI:10.1007/bf00413024