Identification of short promoter regions involved in the transcriptional expression of the nitrate reductase gene in Chlamydomonas reinhardtii

In Chlamydomonas reinhardtii, the expression of the Nia1 gene encoding NAD(P)H nitrate reductase is controlled at the transcriptional level, positively by light and negatively by ammonium. Previous work has shown that the region -279 to +269 with respect to the start site of transcription was suffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2001-01, Vol.45 (2), p.215-227
Hauptverfasser: Loppes, R, Radoux, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Chlamydomonas reinhardtii, the expression of the Nia1 gene encoding NAD(P)H nitrate reductase is controlled at the transcriptional level, positively by light and negatively by ammonium. Previous work has shown that the region -279 to +269 with respect to the start site of transcription was sufficient to confer regulated expression of a promoterless arylsulfatase (Ars) reporter gene. To understand the mechanisms underlying this regulation, the -279 to +2 sequence was analysed for the presence of ammonium-responsive elements using either pJD54 (promoterless Ars gene) or pJD100 (minimal beta-tubulin promoter-driven Ars gene). The region lying between -195 and -120 was shown to be dispensable. Essential responsive elements were found in four distinct regions between -231 and -219, -120 and -100, -76 and -65 and -33 and -8. Each of these sequences is required for maximal expression in the absence of ammonium and a conserved GGA/TAGGGT motif is present in two of these regions. Several deletions within the region -33 to -77 were shown to partially relieve the transformants from the negative effect of ammonium. These experiments demonstrate that Nia1 expression is promoted by at least four elements between -231 and -8 and suggest that part of the repression by ammonium takes place through a proximal element located in the -51 to -33 sequence.
ISSN:0167-4412
1573-5028
DOI:10.1023/A:1006401312916