Design and validation of an automated hydrostatic weighing system

The purpose of this study was to design and evaluate the validity of an automated technique to assess body density using a computerized hydrostatic weighing system. An existing hydrostatic tank was modified and interfaced with a microcomputer equipped with an analog-to-digital converter. Software wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine and science in sports and exercise 1986-08, Vol.18 (4), p.479-484
Hauptverfasser: McClenaghan, B A, Rocchio, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to design and evaluate the validity of an automated technique to assess body density using a computerized hydrostatic weighing system. An existing hydrostatic tank was modified and interfaced with a microcomputer equipped with an analog-to-digital converter. Software was designed to input variables, control the collection of data, calculate selected measurements, and provide a summary of the results of each session. Validity of the data obtained utilizing the automated hydrostatic weighing system was estimated by: evaluating the reliability of the transducer/computer interface to measure objects of known underwater weight; comparing the data against a criterion measure; and determining inter-session subject reliability. Values obtained from the automated system were found to be highly correlated with known underwater weights (r = 0.99, SEE = 0.0060 kg). Data concurrently obtained utilizing the automated system and a manual chart recorder were also found to be highly correlated (r = 0.99, SEE = 0.0606 kg). Inter-session subject reliability was determined utilizing data collected on subjects (N = 16) tested on two occasions approximately 24 h apart. Correlations revealed high relationships between measures of underwater weight (r = 0.99, SEE = 0.1399 kg) and body density (r = 0.98, SEE = 0.00244 g X cm-1). Results indicate that a computerized hydrostatic weighing system is a valid and reliable method for determining underwater weight.
ISSN:0195-9131
DOI:10.1249/00005768-198608000-00018