Involvement of nitric oxide in morphine-induced c-Fos expression in the rat striatum

Induction of expression of immediate-early gene c-Fos in the striatum is a common effect of many drugs of abuse, including morphine. Previous studies have shown that the morphine-mediated c-Fos response is attenuated by antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research bulletin 2001-01, Vol.54 (2), p.207-212
Hauptverfasser: Harlan, Richard E, Webber, Douglas S, Garcia, Meredith M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Induction of expression of immediate-early gene c-Fos in the striatum is a common effect of many drugs of abuse, including morphine. Previous studies have shown that the morphine-mediated c-Fos response is attenuated by antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Other evidence suggests that the NDMA receptor may be coupled to the enzyme neuronal nitric oxide synthase (nNOS). NMDA receptor-mediated increases in intracellular calcium can activate nNOS, which catalyzes the formation of the signaling molecule nitric oxide. Because activation of NMDA receptors mediates morphine-induced c-Fos expression, we tested the hypothesis that activation of nNOS is involved in this cascade. Male rats were injected with the nNOS-selective inhibitor 7-nitroindazole (7-NI) or vehicle 30 min prior to injection of morphine sulfate or vehicle. Two hours later they were perfused with fixative and the brains removed for immunocytochemical analysis for c-Fos. Morphine induced c-Fos expression in the striatum, cerebral cortex, and midline/intralaminar nuclei of thalamus. Expression in the striatum, but not thalamus or cortex, was significantly blocked by 7-NI. Double-label immunocytochemistry revealed no co-localization of c-Fos and nNOS in any brain region. These results support a role for nNOS in the neural circuits activated by morphine.
ISSN:0361-9230
1873-2747
DOI:10.1016/S0361-9230(00)00451-2