Role of PAC(1) receptor in adrenal catecholamine secretion induced by PACAP and VIP in vivo

The present study was conducted to investigate the functional implication of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC(1)) receptor in the adrenal catecholamine (CA) secretion induced by either PACAP-27 or vasoactive intestinal polypeptide (VIP) in anesthetized dogs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2001-02, Vol.280 (2), p.R510-R518
Hauptverfasser: Lamouche, S, Yamaguchi, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study was conducted to investigate the functional implication of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC(1)) receptor in the adrenal catecholamine (CA) secretion induced by either PACAP-27 or vasoactive intestinal polypeptide (VIP) in anesthetized dogs. PACAP-27, VIP, and their respective antagonists were locally infused to the left adrenal gland via the left adrenolumbar artery. Plasma CA concentrations in adrenal venous and aortic blood were determined by means of a high-performance liquid chromatograph coupled with an electrochemical detector. Adrenal venous blood flow was measured by gravimetry. The administration of PACAP-27 (50 ng) resulted in a significant increase in adrenal CA output. VIP (5 microg) also increased the basal CA secretion to an extent comparable to that observed with PACAP-27. In the presence of PACAP partial sequence 6--27 [PACAP-(6--27); a PAC(1) receptor antagonist] at the doses of 7.5 and 15 microg, the CA response to PACAP-27 was attenuated by approximately 50 and approximately 95%, respectively. Although the CA secretagogue effect of VIP was blocked by approximately 85% in the presence of PACAP-(6--27) (15 microg), it remained unaffected by VIP partial sequence 10--28 [VIP-(10--28); a VIP receptor antagonist] at the dose of 15 microg. Furthermore, the CA response to PACAP-27 did not change in the presence of the same dose of VIP--(10--28). The results indicate that PACAP-(6--27) diminished, in a dose-dependent manner, the increase in adrenal CA secretion induced by PACAP-27. The results also indicate that the CA response to either PACAP-27 or VIP was selectively inhibited by PACAP-(6--27) but not by VIP-(10--28). It is concluded that PAC(1) receptor is primarily involved in the CA secretion induced by both PACAP-27 and VIP in the canine adrenal medulla in vivo.
ISSN:0363-6119
DOI:10.1152/ajpregu.2001.280.2.R510