Endothelial E- and P-selectin expression in iNOS- deficient mice exposed to polymicrobial sepsis
In vitro, nitric oxide (NO) decreases leukocyte adhesion to endothelium by attenuating endothelial adhesion molecule expression. In vivo, lipopolysaccharide-induced leukocyte rolling and adhesion was greater in inducible NO synthase (iNOS)-/- mice than in wild-type mice. The objective of this study...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: Gastrointestinal and liver physiology 2001-02, Vol.280 (2), p.G291-G297 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In vitro, nitric oxide (NO) decreases leukocyte adhesion to endothelium by attenuating endothelial adhesion molecule expression. In vivo, lipopolysaccharide-induced leukocyte rolling and adhesion was greater in inducible NO synthase (iNOS)-/- mice than in wild-type mice. The objective of this study was to assess E- and P-selectin expression in the microvasculature of iNOS-/- and wild-type mice subjected to acute peritonitis by cecal ligation and perforation (CLP). E- and P-selectin expression were increased in various organs within the peritoneum of wild-type animals after CLP. This CLP-induced upregulation of E- and P-selectin was substantially reduced in iNOS-/- mice. Tissue myeloperoxidase (MPO) activity was increased to a greater extent in the gut of wild-type than in iNOS-/- mice subjected to CLP. In the lung, the reduced expression of E-selectin in iNOS-/- mice was not associated with a decrease in MPO. Our findings indicate that NO derived from iNOS plays an important role in sepsis-induced increase in selectin expression in the systemic and pulmonary circulation. However, in iNOS-/- mice, sepsis-induced leukocyte accumulation is affected in the gut but not in the lungs. |
---|---|
ISSN: | 0193-1857 1522-1547 |
DOI: | 10.1152/ajpgi.2001.280.2.G291 |