Uncoupling p70(s6) kinase activation and proliferation: rapamycin-resistant proliferation of human CD8(+) T lymphocytes

Rapamycin is a fungal macrolide that inhibits the proliferation of T cells. Studies in both animals and humans have found that rapamycin significantly reduces graft rejection. However, though CD8(+) T cells are involved in graft infiltration and rejection, little is known regarding the effects of ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2001-03, Vol.166 (5), p.3201-3209
Hauptverfasser: Slavik, J M, Lim, D G, Burakoff, S J, Hafler, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapamycin is a fungal macrolide that inhibits the proliferation of T cells. Studies in both animals and humans have found that rapamycin significantly reduces graft rejection. However, though CD8(+) T cells are involved in graft infiltration and rejection, little is known regarding the effects of rapamycin on CD8(+) human T cell responses. In this study, we examined the mechanism of rapamycin-induced inhibition of Ag-driven activation of CD8(+) T cells. Surprisingly, a heterogeneous proliferative response in the presence of rapamycin was observed among different Ag-specific CD8(+) T cell clones; this was also observed in CD8(+) peripheral blood T cells activated with TCR cross-linking ex vivo. Inhibition of T cell proliferation by rapamycin was controlled by both the strength of signal delivered through the Ag receptor as well as the specific costimulatory signals received by the T cell. Rapamycin-resistant proliferation occurred despite inhibition of p70(s6) kinase activity. Moreover, rapamycin-resistant proliferation of the CD8(+) T cell clones was blocked by anti-IL-2 Abs, suggesting that while some of the parallel pathways triggered by IL-2R signaling are sensitive to the effects of rapamycin, others account for the Ag-driven rapamycin resistance. These data provide a new framework for examining the specific mechanism of action of rapamycin in human disease.
ISSN:0022-1767
DOI:10.4049/jimmunol.166.5.3201