The Goodwin Model: Simulating the Effect of Light Pulses on the Circadian Sporulation Rhythm of Neurospora Crassa

The Goodwin oscillator is a minimal model that describes the oscillatory negative feedback regulation of a translated protein which inhibits its own transcription. Now, over 30 years later this scheme provides a basic description of the central components in the circadian oscillators of Neurospora,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2001-03, Vol.209 (1), p.29-42
Hauptverfasser: RUOFF, PETER, VINSJEVIK, MERETE, MONNERJAHN, CHRISTIAN, RENSING, LUDGER
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Goodwin oscillator is a minimal model that describes the oscillatory negative feedback regulation of a translated protein which inhibits its own transcription. Now, over 30 years later this scheme provides a basic description of the central components in the circadian oscillators of Neurospora, Drosophila, and mammals. We showed previously thatNeurospora 's resetting behavior by pulses of temperature, cycloheximide or heat shock can be simulated by this model, in which degradation processes play an important role for determining the clock's period and its temperature-compensation. Another important environmental factor for the synchronization is light. In this work, we show that on the basis of a light-induced transcription of the frequency (frq) gene phase response curves of light pulses as well as the influence of the light pulse length on phase shifts can be described by the Goodwin oscillator. A relaxation variant of the model predicts that directly after a light pulse inhibition in frq -transcription occurs, even when the inhibiting factor Z (FRQ) has not reached inhibitory concentrations. This has so far not been experimentally investigated for frq transcription, but it complies with a current model of light-induced transcription of other genes by a phosphorylated white-collar complex. During long light pulses, the relaxational model predicts that the sporulation rhythm is arrested in a steady state of high frq -mRNA levels. However, experimental results indicate the possibility of oscillations around this steady state and more in favor of the results by the original Goodwin model. In order to explain the resetting behavior by two light pulses, a biphasic first-order kinetics recovery period of the blue light receptor or of the light signal transduction pathway has to be assumed.
ISSN:0022-5193
1095-8541
DOI:10.1006/jtbi.2000.2239