Semipermeable dressings improve epidermal barrier function in premature infants

Infants of less than 32 wk gestation have a defective epidermal barrier, with increased skin permeability and transepidermal water loss (TEWL). We studied the effect of a nonadhesive semipermeable dressing on the epidermal barrier of premature infants and on fetal skin transplanted to nude mice. Fif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 1994-09, Vol.36 (3), p.306-314
Hauptverfasser: MANCINI, A. J, SOOKDEO-DROST, S, MADISON, K. C, SMOLLER, B. R, LANE, A. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infants of less than 32 wk gestation have a defective epidermal barrier, with increased skin permeability and transepidermal water loss (TEWL). We studied the effect of a nonadhesive semipermeable dressing on the epidermal barrier of premature infants and on fetal skin transplanted to nude mice. Fifteen infants with a mean estimated gestational age of 27.7 wk and 16 human fetal skin grafts (estimated gestational age, 23-26 wk) transplanted to eight nude mice were studied. One lower leg (or skin graft) was treated and the other left untreated as a control. In the infants, TEWL was measured on control skin and treated skin (both through the dressing and after temporary dressing removal) on d 0, 1, 2, 4, and 7. Bacterial and fungal cultures were also performed. In the mice, TEWL and skin blood flow were measured on d 0, 2, and 4. Biopsies were obtained on d 4 for a cell proliferation assay, histology, and electron microscopy. Treated infant skin showed a consistently lower bacterial number and a significantly decreased TEWL (measured through the dressing). There was also a significantly lower TEWL on the treated side, measured after temporary dressing removal, on d 1, 2, 4, and 7, documenting improved epidermal barrier function. The animal study revealed decreased TEWL and a nearly 2-fold greater d-4 keratinocyte proliferation (p = 0.01) in treated skin and decreased blood flow on d 4 in control skin (p = 0.01). There was no significant difference in the volume density of membrane coating granules or the morphology of intercorneocyte spaces.
ISSN:0031-3998
1530-0447
DOI:10.1203/00006450-199409000-00007