Binding of Keratin Intermediate Filaments (K10) to the Cornified Envelope in Mouse Epidermis: Implications for Barrier Function
The cornified envelope, a structure unique to keratinocytes, is a hallmark of their terminal differentiation and plays an important role in epidermal barrier function. Cornified envelope is formed through the action of a membrane-associated transglutaminase, which covalently cross-links protein prec...
Gespeichert in:
Veröffentlicht in: | Journal of investigative dermatology 1994-12, Vol.103 (6), p.780-784 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cornified envelope, a structure unique to keratinocytes, is a hallmark of their terminal differentiation and plays an important role in epidermal barrier function. Cornified envelope is formed through the action of a membrane-associated transglutaminase, which covalently cross-links protein precursors into a highly insoluble network at the inner leaflet of the plasma membrane in granular keratinocytes and stratum corneum. Initial studies, using dansylcadaverine for enzyme-directed labeling of acyl-acceptor transglutaminase substrates in mouse epidermal homogenates identified a prominent 60-kDa substrate. Specific anti- bodies raised to this protein stained the cytoplasm of suprabasal cells of stratified squamous epithelia, whereas simple epithelia and nonepithelial tissues showed no staining. Immunoscreening of a cDNA expression library from adult mouse skin identified 18 positive clones. DNA sequencing of the largest clone (which hybridized to a keratinocyte-specific transcript of 2.0 kb) showed greater than 99.5% homology with mouse keratin 10. limmunoelectron microscopy using anti-S60 and another antibody to keratin 10 showed specific binding to cornified envelope associated filamentous structures. Proteolytic fragments of purified cornified envelope from mouse epidermis showed reactivity to anti-S60. These data show that mouse keratin 10 is tightly bound to cornified envelope and may be a cross-linked substrate. The tight binding of keratin filaments and CE suggests a mechanism by which they might interact to enhance the structural integrity of the stratum corneum. |
---|---|
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1111/1523-1747.ep12413024 |