Mitochondrial DNA alterations and genetic diseases: a review

We review the main features of human mitochondrial function and structure, and in particular mitochondrial transcription, translation, and replication cycles. Furthermore, some peculiarities such as mitochondria's high polymorphism, the existence of mitochondrial pseudogenes, and the various co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 1994, Vol.48 (5), p.199-214
Hauptverfasser: Lestienne, P., Bataillé, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review the main features of human mitochondrial function and structure, and in particular mitochondrial transcription, translation, and replication cycles. Furthermore, some peculiarities such as mitochondria's high polymorphism, the existence of mitochondrial pseudogenes, and the various considerations to take into account when studying mitochondrial diseases will also be mentioned. Mitochondrial syndromes mostly affecting the nervous system have, during the past few years, been associated with mitochondrial DNA (mt DNA) alterations such as deletions, duplications, mutations and depletions. We suggest a possible classification of mitochondrial diseases according to the kind of mt DNA mutations: structural mitochondrial gene mutation as in LHON (Leber's Hereditary Optic Neuropathy) and NARP (Neurogenic muscle weakness, Ataxia and Retinitis Pigmentosa) as well as some cases of Leigh's syndrome; transfer RNA and ribosomal RNA mitochondrial gene mutation as in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Strokelike Episodes) or MERRF (Myoclonic Epilepsy with Ragged Red Fibers) or deafness with aminoglycoside; structural with transfer RNA mitochondrial gene mutations as observed in large-scale deletions or duplications in Kearns-Sayre syndrome, Pearson's syndrome, diabetes mellitus with deafness, and CPEO (Chronic Progressive External Ophtalmoplegia). Depletions of the mt DNA may also be classified in this category. Even though mutations are generally maternally inherited, most of the deletions are sporadic. However, multiple deletions or depletions may be transmitted in a mendelan trait which suggests that nuclear gene products play a primary role in these processes. The relationship between a mutation and a particular phenotype is far from being fully understood. Gene dosage and energic threshold, which are tissue-specific, appear to be the best indicators. However, the recessive or dominant behavior of both the wild type or the mutated genome appears to play a significant role, which can be verified with in vitro studies.
ISSN:0753-3322
1950-6007
DOI:10.1016/0753-3322(94)90134-1