Relationship between fatty acid accretion, membrane composition, and biologic functions

Dietary fat affects metabolic pathways for phospholipid biosynthesis in tissues in a coordinated fashion. This may be important to aspects of development that concern phosphatidylcholine metabolism or regulatory processes that depend on signals from a changing milieu in the microenvironment of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pediatrics 1994-11, Vol.125 (5), p.S25-S32
Hauptverfasser: Clandinin, M.T., Jumpsen, J., Suh, Miyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dietary fat affects metabolic pathways for phospholipid biosynthesis in tissues in a coordinated fashion. This may be important to aspects of development that concern phosphatidylcholine metabolism or regulatory processes that depend on signals from a changing milieu in the microenvironment of the membrane. Dietary fat influences the phosphatidylethanolamine (PE) composition in many membranes of the brain and retina and may be altered by small changes in the content of 20:4(6) and 22:6(3). Membrane PE fatty acids that contain one, four, or six double bonds and the ratio of 22:5(6) to 22:6(3) in PE that contains four to six double bonds are also affected. An increase in the m6 fatty acid content of membranes is associated with increased PE methyltransferase activity and decreased phosphocholine transferase activity, thus indicating a mechanism by which change in an exogenous factor (e.g., dietary fat intake) may alter neural phospholipid biosynthesis. Small changes in the composition of dietary fat intake change the composition of brain membranes during development. It is provocative to ponder whether diet could be used to induce formation of membrane structures that are more resistant to specific insults that cause degeneration of brain structural material, to ensure optimal functional compositions, or to reverse degenerative changes that occur in neural membrane structure and function.
ISSN:0022-3476
1097-6833
DOI:10.1016/S0022-3476(06)80733-X