Genetically Modified Skin to Treat Disease: Potential and Limitations

Molecular definition of disease at the level of the gene and advances in recombinant DNA technology suggest that many diseases are amenable to correction by genes not bearing the defective elements that result in disease. Many questions must be answered before this therapy can be used to correct chr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of investigative dermatology 1994-11, Vol.103 (5), p.76-84
Hauptverfasser: Krueger, G G, Morgan, J R, Jorgensen, C M, Schmidt, L., Li, H L, Kwan, M K, Boyce, S T, Wiley, H S, Kaplan, J., Petersen, M J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular definition of disease at the level of the gene and advances in recombinant DNA technology suggest that many diseases are amenable to correction by genes not bearing the defective elements that result in disease. Many questions must be answered before this therapy can be used to correct chronic diseases. These questions fall into safety and efficacy categories. Experience with transplanting cellular elements of skin or skin substitutes (defined as skin that possess the cell types and a dermal structure to develop into a functioning skin) to athymic rodents is considerable and is seen as a system where these questions can be answered. This paper reviews these questions and presents our early analysis of genetically modified cells in skin substitutes in vivo and in vitro. Experimental data demonstrate that both a matrix of woven nylon, housing a fibroblast generated collage, and dead dermis can be utilized to shuttle genetically modified human fibroblasts from the laboratory to an in vivo setting. Genetically modified fibroblasts do not migrate from the shuttle to the surrounding tissue. The survival of significant numbers, ˜ 70%, of genetically modified fibroblasts for at least 6 weeks in these shuttles, supports this general approach as having clinical utility. It is also concluded that skin substitute systems can be used to generate a genetically modified skin in vitro that has the capacity to develop into functional skin in vivo. Further, as genetically modified keratinocytes differentiate there is increased production by the transgene, supporting the concept that keratinocytes have true potential as shuttles for therapeutic genes. This work demonstrates that transplantation of systems containing genetically modified cells of the skin can be used to experimentally define many aspects of gene therapy using skin before this technology is taken to the clinic. Examples include determining the effect of gene transduction and expression on structure and function of the genetically modified skin as well as on distant skin and an assessment of the translational capacity of the transgene as function of time and cell number. J Invest Dertnatol 103:76S-84S, 1994
ISSN:0022-202X
1523-1747
DOI:10.1038/jid.1994.14