Increased Gene Transfer Into Human Hematopoietic Progenitor Cells by Extended In Vitro Exposure to a Pseudotyped Retroviral Vector

Retroviral-mediated gene transfer is the most attractive modality for gene transfer into hematopoietic stem cells. However, transduction efficiency has been low using amphotropic Moloney murine leukemia virus (MoMLV) vectors. In this study, we investigated modifications of gene transfer using amphot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 1994-11, Vol.84 (9), p.2890-2897
Hauptverfasser: Kalle, Christof von, Kiem, Hans-Peter, Goehle, Sondra, Darovsky, Boris, Heimfeld, Shelly, Torok-Storb, Beverly, Storb, Rainer, Schuening, Friedrich G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retroviral-mediated gene transfer is the most attractive modality for gene transfer into hematopoietic stem cells. However, transduction efficiency has been low using amphotropic Moloney murine leukemia virus (MoMLV) vectors. In this study, we investigated modifications of gene transfer using amphotropic MoMLV vectors in cell-free supernatant for their ability to increase the currently low transduction of both committed hematopoietic progenitors, granulocyte-macrophage colony-forming units (CFU-GMs), and their precursors, long-term culture-initiating cells (LTC-IC). First, based on the observation that bone marrow cells express more gibbon ape leukemia virus (GALV) receptor (Glvr-1) than amphotropic receptor (Ram-1), PG13/LN, which is a MoMLV vector pseudotyped with the GALV envelope, was compared with the analogous amphotropic envelope vector (PA317/LN). Second, progenitor cell transduction efficiency was compared between CD34 enriched and nonenriched progenitor populations. Third, the duration of transduction in vitro was extended to increase the proportion of progenitor cells that entered cell cycle and could thereby integrate vector cDNA. In 20 experiments, 1 × 10B marrow or peripheral blood mononuclear cells (PBMCs)/mL were exposed to identical titers of pseudotyped PG13/LN vector or PA317/ LN vector in the presence of recombinant human interleukin-1 (IL-1), IL-3, IL-6, and stem cell factor (SCF; c-kit ligand) for 5 days. 50% of fresh vector supernatant was refed daily. Hematopoietic progenitor cells as measured by G418-resistant granulomonocytic colony (CFU-GM) formation were transduced more effectively with PG13/LN (19.35%) than with PA317/LN (11.5%, P = .012). In 11 further experiments, enrichment of CD34 antigen positive cells significantly improved gene transfer from 13.9% G418-resistant CFU-GM in nonenriched to 24.9% in CD34-enriched progenitor cells (P < .01). To analyze gene transfer after extended growth factor-supported long-term culture, 1 × 106 marrow cells/mL were cultured with IL-1, IL-3, IL-6, and SCF (50 ng/mL each) for 1, 2, and 3 weeks. Fifty percent of PG13/LIM supernatant with growth factors was refed on 5 days per week. Five percent of marrow CFU-GM and 67% of LTC-IC were G418 resistant at 1 week (n = 4), 60% of CFU-GM and 100% of LTC-IC were resistant at 2 weeks (n - 2) and 74% of CFU-GM (n = 4) and 82% of LTC-IC (n = 2) were resistant at three weeks. These data suggest that the efficiency of human hematopoietic progenitor cell t
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V84.9.2890.2890