Effect of T3 modulation on pokeweed mitogen-induced T cell activation: evidence for an alternative pathway of T cell activation
Modulation of the T3 molecule on human T cells with monoclonal anti-T3 antibodies has been shown to result in the disappearance of the T3-Ti complex from the membrane and to preclude subsequent T cell activation by various mitogenic and antigenic stimuli. We have examined the effect of T3 modulation...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1986-05, Vol.136 (9), p.3346-3350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modulation of the T3 molecule on human T cells with monoclonal anti-T3 antibodies has been shown to result in the disappearance of the T3-Ti complex from the membrane and to preclude subsequent T cell activation by various mitogenic and antigenic stimuli. We have examined the effect of T3 modulation on pokeweed mitogen (PWM)-induced T cell activation. T3 modulation was accomplished by incubating peripheral blood mononuclear cells (PBMC) or mixtures of T cells and non-T cells at 37 degrees C for 18 hr in the presence of UCHT-1, a mouse IgG1 anti-T3 monoclonal antibody. Only donors whose PBMC were unresponsive to the mitogenic activity of this antibody were selected. Although T3 modulation resulted in complete to substantial inhibition of T cell proliferation induced by low PWM concentrations of 5 or 50 ng/ml, it had no effect on T cell proliferation when PWM was added at a concentration of 0.5 and 5 micrograms/ml. The results demonstrate that the higher doses of PWM can induce T cell proliferation via an alternative pathway that does not involve participation of the T3-Ti complex. In contrast, irrespective of the PWM dose added, T3 modulation almost totally inhibited PWM-induced interleukin 2 (IL 2) production. The differential effect of T3 modulation on IL 2 production and on T cell proliferation induced by high doses of PWM suggests that this alternative pathway of T cell proliferation is IL 2 independent. This suggestion was additionally substantiated by the lack of effect of anti-Tac, and anti-IL 2 receptor antibody, on PWM-induced proliferation of T3-modulated T cells. In conclusion our data demonstrate that high doses of PWM can induce T cells to proliferate via an alternative pathway that does not involve perturbation of the T3-Ti complex. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.136.9.3346 |