The contribution of intestinal secretion to the dose-dependent absorption of celiprolol

The contribution of the intestine to the nonlinear absorption of celiprolol in the rat was studied. After intravenous administration of 14C-celiprolol to bile duct-cannulated rats, approximately 9% of the dose was found to be associated with intestinal tissue and its contents. Microhistoautoradiogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 1994-05, Vol.11 (5), p.648-653
Hauptverfasser: SHIU-MING KUO, WHITBY, B. R, ARTURSSON, P, ZIEMNIAK, J. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The contribution of the intestine to the nonlinear absorption of celiprolol in the rat was studied. After intravenous administration of 14C-celiprolol to bile duct-cannulated rats, approximately 9% of the dose was found to be associated with intestinal tissue and its contents. Microhistoautoradiography of frozen intestinal sections showed a time-dependent secretion of celiprolol from the blood into the lumen of the rat intestine. Propranolol, a lipophilic beta-blocker, was also found to be secreted into the intestine in vivo and transported in epithelial cells in both a temperature- and a pH-dependent manner, although to a lesser extent than celiprolol. Consistent with the observations in rats, transport of celiprolol from the basal-lateral to the apical side was found to dominate apical-to-basal transport using human Caco-2 cell monolayers. Additionally, using isolated rat small intestinal epithelial cells, celiprolol was found also to have a time- and temperature-dependent uptake, suggesting the involvement of a carrier-mediated system in its uptake. The uptake was inhibited by 2 mM celiprolol and propranolol and was also found to be pH dependent. Saturation of the carrier-mediated secretion of celiprolol in the intestine may result in enhanced absorption of celiprolol at high doses and account for its observed nonlinear absorption.
ISSN:0724-8741
1573-904X
DOI:10.1023/a:1018959809352