The spatial organization of the peripheral olfactory system of the hamster. Part II: Receptor surfaces and odorant passageways within the nasal cavity

The spatial organization of olfactory receptor surfaces and odorant passageways within the nasal cavity was studied in hamsters through descriptive and morphometric analyses of a complete stereotaxically defined series of coronal, sagittal, and horizontal sections through the snout. These analyses r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research bulletin 1994, Vol.34 (3), p.211-241
Hauptverfasser: Clancy, Andrew N., Schoenfeld, Thomas A., Forbes, William B., Macrides, Foteos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spatial organization of olfactory receptor surfaces and odorant passageways within the nasal cavity was studied in hamsters through descriptive and morphometric analyses of a complete stereotaxically defined series of coronal, sagittal, and horizontal sections through the snout. These analyses reveal that the caudal two-thirds of each cavity is divided into two longitudinally oriented medial and lateral channels. The olfactory mucosa that lines these two channels projects selectively onto the medial and lateral halves of the main olfactory bulb (MOB), respectively. Moreover, the ethmoturbinates of the caudal recesses create highly convoluted channels, lined by ventrally projecting mucosa, that lie ventral, lateral, and dorsal to a relatively smooth central channel lined by dorsally projecting mucosa. The rhinotopic map makes equivalent representations of medial and lateral olfactory space to the MOB but gives the smooth space lined by dorsally projecting mucosa a disproportionately larger representation on the MOB than the convoluted space lined by the more expansive ventrally projecting mucosa. Recent descriptions of the spatial distribution of probes for odorant receptor proteins conform closely to this organization, giving credence to the idea that rhinotopy is a basis for representing to the MOB the specific molecular features of odorant molecules.
ISSN:0361-9230
1873-2747
DOI:10.1016/0361-9230(94)90060-4