Cloning and expression of a novel human brain inward rectifier potassium channel

A complementary DNA encoding an inward rectifier K+ channel (HRK1) was isolated from human hippocampus using a 392-base pair cDNA (HHCMD37) as a probe. HRK1 shows sequence similarity to three recently cloned inwardly rectifying potassium channels (IRK1, GIRK1, and ROMK1, 60, 42, and 37%, respectivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1994-08, Vol.269 (32), p.20468-20474
Hauptverfasser: MAKHINA, E. N, KELLY, A. J, LOPATIN, A. N, MERCER, R. W, NICHOLS, C. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A complementary DNA encoding an inward rectifier K+ channel (HRK1) was isolated from human hippocampus using a 392-base pair cDNA (HHCMD37) as a probe. HRK1 shows sequence similarity to three recently cloned inwardly rectifying potassium channels (IRK1, GIRK1, and ROMK1, 60, 42, and 37%, respectively) and has a similar proposed topology of two membrane spanning domains that correspond to the inner core structure of voltage gated K+ channels. When HRK1 was expressed in Xenopus oocytes, large inward K+ currents were observed below the K+ reversal potential but very little outward K+ current was observed. In on-cell membrane patches, single channel conductance (g) was estimated to be 10 picosiemens by both direct measurement and noise analysis, in 102 mM external [K+]. HRK1 currents were blocked by external Ba2+ and Cs+ (K(0) = 183 microM, and K(-130) = 30 microM, respectively), and internal tetraethylammonium ion (K(0) = 62 microM), but were insensitive to external tetraethylammonium ion. The functional properties of HRK1 are very similar to those of glial cell inward rectifier K+ channels and HRK1 may represent a glial cell inward rectifier.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)32016-1