Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects

The principles of structural kinetics, as applied to dimeric enzymes, allow us to understand how the strength of subunit coupling controls both substrate-binding co-operativity, under equilibrium conditions, and kinetic co-operativity, under steady state conditions. When subunits are loosely coupled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 1985-12, Vol.117 (4), p.633-649
Hauptverfasser: Ricard, Jacques, Noat, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principles of structural kinetics, as applied to dimeric enzymes, allow us to understand how the strength of subunit coupling controls both substrate-binding co-operativity, under equilibrium conditions, and kinetic co-operativity, under steady state conditions. When subunits are loosely coupled, positive substrate-binding co-operativity may result in either an inhibition by excess substrate or a positive kinetic co-operativity. Alternatively, negative substrate-binding co-operativity is of necessity accompanied by negative kinetic co-operativity. Whereas the extent of negative kinetic co-operativity is attenuated with respect to the corresponding substrate-binding co-operativity, the positive kinetic co-operativity is amplified with respect to that of the substrate-binding co-operativity. Strong kinetic co-operativity cannot be generated by a loose coupling of subunits. If subunits are tightly coupled, that is if the conformational change of a subunit is propagated to the other, the dimeric enzyme may display apparently surprising co-operativity effects. If the strain of the active sites generated by subunit coupling is relieved in the non-liganded and fully-liganded states, both substrate-binding co-operativity and kinetic co-operativity cannot be negative. If the strain of the active sites however, is not relieved in these states, negative substrate-binding co-operativity is accompanied by either a positive or a negative co-operativity. The possible occurrence of a reversal of kinetic co-operativity, with respect to substrate-binding co-operativity, is the direct consequence of quaternary constraints in the dimeric enzyme. Moreover, tight coupling between subunits may generate a positive kinetic co-operativity which is not associated with any substrate-binding co-operativity. In other words a dimeric enzyme may well bind the substrate in a non co-operative fashion and display a positive kinetic co-operativity generated by the strain of the active sites.
ISSN:0022-5193
1095-8541
DOI:10.1016/S0022-5193(85)80244-7