Role of Na+-H+ Exchange in Mediating Effects of Endothelin-1 on Normal and Ischemic/Reperfused Hearts

Endothelin (ET) has been shown to be elevated under conditions of cardiac pathology and to produce diverse cardiac effects, including coronary constriction and a positive inotropic influence. We characterized the concentration- and time-dependent effects of the most potent of the ET isoforms, ET-1 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 1994-08, Vol.75 (2), p.369-378
Hauptverfasser: Khandoudi, Nassirah, Ho, Josephine, Karmazyn, Morris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endothelin (ET) has been shown to be elevated under conditions of cardiac pathology and to produce diverse cardiac effects, including coronary constriction and a positive inotropic influence. We characterized the concentration- and time-dependent effects of the most potent of the ET isoforms, ET-1 (0.4, 2, and 4 nmol/L), on myocardial contractility and coronary resistance and assessed its effects on the ischemic and reperfused heart. Because ET-1 has been shown to activate the Na-H exchanger in cardiac myocytes, we determined the contribution of the antiport by examining the effects of ET-1 in the presence of the Na-H exchange inhibitor methylisobutyl amiloride (MIA). At all three concentrations, ET-1 produced an initial positive inotropic effect that was reversed with continued perfusion, the degree of the reversal being dependent on ET-1 concentration. With 0.4 nmol/L, contractility returned to pre-ET-1 values, whereas after 75 minutes of perfusion with 4 nmol/L ET-1, contractility was depressed by 75%. At all concentrations, ET-1 produced a coronary-constricting effect, whereas an elevation in resting tension was observed only with 4 nmol/L ET-1. MIA significantly prevented the positive inotropic effect of ET-1 but had no effect on loss in function or elevation in resting tension produced by 4 nmol/L ET-1. Furthermore, MIA partially, but not significantly, attenuated the constricting effects of all ET-1 concentrations. In the ischemic heart, 0.4 nmol/L ET-1 appeared to delay the loss in contractility produced by cessation of flow, although the effect was not significant. Higher concentrations of ET-1 were without effect on ischemia-induced contractile depression, although their presence produced a marked elevation in resting tension during ischemia that was attenuated by MIA. Recovery in contractility was reduced by all concentrations of ET-1, although the effects of the lowest concentration were associated primarily with defective relaxation. The depressant effects of ET-1 either in normal or ischemic/reperfused hearts were irreversible. The inhibitory effects of ET-1 on contractile recovery were associated with diminished tissue glycogen and elevated lactate levels. High-energy phosphates after reperfusion were depressed in hearts treated with 4 nmol/L ET-1. The attenuation in contractile recovery and alterations in metabolite content were prevented by MIA. These results provide evidence that ET-1 produces complex effects on heart function that are li
ISSN:0009-7330
1524-4571
DOI:10.1161/01.res.75.2.369