Differential distribution of amyloid protein precursor immunoreactivity in the rat brain studied by using five different antibodies

The β‐amyloid or A4 protein is found deposited in neuritic plaques and neurofibrillary tangles in Alzheimer's disease (AD) affected brains and in the brains of adults with Down's Syndrome. The precursor to this 42 amino acid protein is the 695 amino acid long amyloid protein precursor (APP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 1994-04, Vol.342 (1), p.78-96
Hauptverfasser: Beeson, James G., Shelton, Earl R., Chan, Hardy W., Gage, Fred H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The β‐amyloid or A4 protein is found deposited in neuritic plaques and neurofibrillary tangles in Alzheimer's disease (AD) affected brains and in the brains of adults with Down's Syndrome. The precursor to this 42 amino acid protein is the 695 amino acid long amyloid protein precursor (APP‐695). Two additional APP species, APP‐751 and APP‐770, each contain a 56‐amino‐acid insert sequence that is analogous to Kunitz protease inhibitors. APP mRNA is widely distributed in both the human and rat brain, although the adult rat does not develop mature amyloid pathology. In this study we used antibodies against the N‐terminus, junction site (unique to APP‐695) insert sequence (unique to APP‐751,‐770), A4 region, and C‐terminus of APP to immunolabel sections from throughout the young adult rat brain. From these results we constructed maps of the staining pattern of each antibody. We found that APP is widely distributed throughout the brain, that labelling is predominantly neuronal in character, and that there is marked variation among the antibodies in the extent of labelling, the particular cell populations stained, and the structures labelled within individual cells. The differential staining patterns observed with the five different antibodies suggest that the way APP is processed differs from one region to another and within different compartments in the cell. The specificity of the antibodies was established by Western blot analysis, in which APP species of approximately 95 and 110 kD were found. Our findings on the distribution of APP provide a foundation for further investigations into the normal role of APP and the pathogenesis of AD. © 1994 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.903420109