Molecular structure of the .beta.-adrenergic receptor
The beta-adrenergic receptor from several tissues has been purified to homogeneity or photoaffinity radiolabeled and its subunit molecular weight determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. In this study we have examined the oligomeric structure of nondenatured bet...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1985-11, Vol.24 (24), p.6869-6875 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The beta-adrenergic receptor from several tissues has been purified to homogeneity or photoaffinity radiolabeled and its subunit molecular weight determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. In this study we have examined the oligomeric structure of nondenatured beta 1- and beta 2-adrenergic receptor proteins, as solubilized with the detergent digitonin. Model systems used were frog and turkey red blood cell as well as rat, rabbit, and bovine lung plasma membrane preparations. To correct for the effects of detergent binding, sedimentation equilibrium analysis in various solvents, as adapted for the air-driven ultracentrifuge, was used. With this approach an estimate of 6 g of digitonin/g of protein binding was determined, corresponding to a ratio of 180 mol of digitonin/mol of protein. Protein molecular weights estimated by this method were 43 500 for the turkey red blood cell beta 1 receptor and 54 000 for the frog red blood cell beta 2 receptor. Molecular weights of 60 000-65 000 were estimated for beta 1 and beta 2 receptors present in mammalian lungs. These values agree with estimates of subunit molecular weight obtained by SDS gel electrophoresis of purified or photoradiolabeled preparations and suggest beta-adrenergic receptors to be digitonin solubilized from the membrane as single polypeptide chains. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00345a020 |