Relationships within the family of GTP-binding proteins isolated from bovine central nervous system
Four members of a family of GTP-binding proteins (G-proteins) which translate stimulation of extracellular receptors into regulation of intracellular enzymes were isolated from the bovine central nervous system. These proteins were examined for functional similarities and cross-reactivity with antib...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1985-12, Vol.260 (30), p.16242-16249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four members of a family of GTP-binding proteins (G-proteins) which translate stimulation of extracellular receptors into regulation of intracellular enzymes were isolated from the bovine central nervous system. These proteins were examined for functional similarities and cross-reactivity with antibodies to the G-protein (transducin, Gt) from the photoreceptor system. Two proteins, Gs and Gi, can be distinguished by their respective abilities to stimulate or inhibit adenylate cyclase. The activated alpha subunits of Gt and a fourth member of the family, Go, did not affect this enzyme. Gt was shown to be unique in its ability to stimulate cGMP-dependent phosphodiesterase. While functionally diverse, the G-proteins were shown to have some common antigenic properties. Antibodies directed against the beta subunit of Gt recognize the beta 36 subunits of all preparations but not a putative second beta 35 subunit. Antibodies specific for the alpha subunit of Gt did not recognize other alpha subunits when immune blots from sodium dodecyl sulfate gels were examined. However, Go alpha, but not Gs alpha or Gi alpha, reacted strongly with the antibodies when the native subunit was spotted directly. This suggests that Go alpha and Gt alpha have homologous structural determinants. An antiserum that recognized Gt gamma did not recognize gamma subunits from other sources. These data support the proposed diversity of function and similarity of structure among the four G-proteins. The alpha and potentially gamma subunits appear to be responsible for the specificity of function. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)36227-0 |