Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells

Human multipotent mesenchymal stromal cells (MSCs) suppress proliferation and alloreactivity of T cells. Several signaling molecules and enzymes contribute to this effect. We focused on carbohydrate-protein interactions and investigated whether lectins are involved in immune modulation by MSC. Gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2010-11, Vol.116 (19), p.3770-3779
Hauptverfasser: Gieseke, Friederike, Böhringer, Judith, Bussolari, Rita, Dominici, Massimo, Handgretinger, Rupert, Müller, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human multipotent mesenchymal stromal cells (MSCs) suppress proliferation and alloreactivity of T cells. Several signaling molecules and enzymes contribute to this effect. We focused on carbohydrate-protein interactions and investigated whether lectins are involved in immune modulation by MSC. Gene expression profiling of MSCs revealed that one of the most important lectins in this setting, galectin-1, was highly expressed. Galectin-1 protein was detected intracellularly and on the cell surface of MSCs. In addition, galectin-1 was released into the cell culture supernatant by MSCs. To analyze the functional role of galectin-1, a stable knockdown of galectin-1 in MSCs with use of a retroviral transfection system was established. Galectin-1 knockdown in MSCs resulted in a significant loss of their immunomodulatory properties, compared with MSCs infected with nontargeting control sequences. The galectin-1 knockdown partially restored the proliferation of CD4+ and CD8+ T cells. By contrast, the effect of MSCs on nonalloreactive natural killer (NK) cells was unaffected by down-regulation of galectin-1 expression. Furthermore, MSC-derived galectin-1 significantly modulated the release of cytokines involved in graft-versus-host disease (GVHD) and autoimmunity (eg, tumor necrosis factor-α [TNFα], IFNγ, interleukin-2 [IL-2], and IL-10. These results identify galectin-1 as the first lectin mediating the immunomodulatory effect of MSCs on allogeneic T cells.
ISSN:0006-4971
1528-0020
1528-0020
DOI:10.1182/blood-2010-02-270777