Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches

Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative bioinformatics 2010-11, Vol.7 (1), p.148-148
Hauptverfasser: Sommer, Björn, Tiys, Evgeny S, Kormeier, Benjamin, Hippe, Klaus, Janowski, Sebastian J, Ivanisenko, Timofey V, Bragin, Anatoly O, Arrigo, Patrizio, Demenkov, Pavel S, Kochetov, Alexey V, Ivanisenko, Vladimir A, Kolchanov, Nikolay A, Hofestädt, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 148
container_title Journal of integrative bioinformatics
container_volume 7
creator Sommer, Björn
Tiys, Evgeny S
Kormeier, Benjamin
Hippe, Klaus
Janowski, Sebastian J
Ivanisenko, Timofey V
Bragin, Anatoly O
Arrigo, Patrizio
Demenkov, Pavel S
Kochetov, Alexey V
Ivanisenko, Vladimir A
Kolchanov, Nikolay A
Hofestädt, Ralf
description Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particular, the techniques allowing the reconstruction of associative networks of various biological objects and events can be useful. In this publication, the combination of different techniques to create such a network associated with an abstract cell environment is discussed in order to gain insights into the functional as well as spatial interrelationships. It is shown that experimentally gained knowledge enriched with data warehouse content and text mining data can be used for the reconstruction and localization of a cardiovascular disease developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein).
doi_str_mv 10.2390/biecoll-jib-2010-148
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_764536676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>764536676</sourcerecordid><originalsourceid>FETCH-LOGICAL-p210t-998660681dc9f5a522e6113311571a6e2d9aff6fe0704f1f78046739afe066943</originalsourceid><addsrcrecordid>eNo1kM1OwzAMxyMkxKaxN0AoN06BpGnT9ogmvqQhdmBcK7dxtoy0GU3LGG_BG1NgWLJsWT_bf5uQM8EvI5nzq9Ji5Z1jG1uyiAvORJwdkbFQQrI4EWpEpiFs-GAyz_KUn5BRJLjKYiXH5OvFhh6c_YTO-oZCowcHtw82UG8o0ApabT19h1D1DlqqbUAIyH7Rx-ViIViLDjrUtLTe-ZWtwNEGu51vX2nl69I2tlnRDj86Wv_lP60aOqA7aHHt-4AUttvWQ7XGcEqODbiA00OckOXtzfPsns2f7h5m13O2HdR3LM8zpYYrhK5yk0ASRaiEkFKIJBWgMNI5GKMM8pTHRpg047FK5VBErlQeywm5-Js7LH7rMXRFbUOFzkGDg6QiVXEilUrVQJ4fyL6sURfb1tbQ7ov_L8pvP4V3JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>764536676</pqid></control><display><type>article</type><title>Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches</title><source>MEDLINE</source><source>De Gruyter Journals - Open Access</source><source>Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Sommer, Björn ; Tiys, Evgeny S ; Kormeier, Benjamin ; Hippe, Klaus ; Janowski, Sebastian J ; Ivanisenko, Timofey V ; Bragin, Anatoly O ; Arrigo, Patrizio ; Demenkov, Pavel S ; Kochetov, Alexey V ; Ivanisenko, Vladimir A ; Kolchanov, Nikolay A ; Hofestädt, Ralf</creator><creatorcontrib>Sommer, Björn ; Tiys, Evgeny S ; Kormeier, Benjamin ; Hippe, Klaus ; Janowski, Sebastian J ; Ivanisenko, Timofey V ; Bragin, Anatoly O ; Arrigo, Patrizio ; Demenkov, Pavel S ; Kochetov, Alexey V ; Ivanisenko, Vladimir A ; Kolchanov, Nikolay A ; Hofestädt, Ralf</creatorcontrib><description>Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particular, the techniques allowing the reconstruction of associative networks of various biological objects and events can be useful. In this publication, the combination of different techniques to create such a network associated with an abstract cell environment is discussed in order to gain insights into the functional as well as spatial interrelationships. It is shown that experimentally gained knowledge enriched with data warehouse content and text mining data can be used for the reconstruction and localization of a cardiovascular disease developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein).</description><identifier>EISSN: 1613-4516</identifier><identifier>DOI: 10.2390/biecoll-jib-2010-148</identifier><identifier>PMID: 21068463</identifier><language>eng</language><publisher>Germany</publisher><subject>Cardiomyopathy, Dilated - metabolism ; Cardiovascular Diseases - metabolism ; Carrier Proteins - metabolism ; Computational Biology - methods ; Computer Graphics ; Data Mining - methods ; Databases, Protein ; Female ; Humans ; Imaging, Three-Dimensional ; Information Storage and Retrieval ; PubMed ; Software ; Systems Biology ; User-Computer Interface</subject><ispartof>Journal of integrative bioinformatics, 2010-11, Vol.7 (1), p.148-148</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21068463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sommer, Björn</creatorcontrib><creatorcontrib>Tiys, Evgeny S</creatorcontrib><creatorcontrib>Kormeier, Benjamin</creatorcontrib><creatorcontrib>Hippe, Klaus</creatorcontrib><creatorcontrib>Janowski, Sebastian J</creatorcontrib><creatorcontrib>Ivanisenko, Timofey V</creatorcontrib><creatorcontrib>Bragin, Anatoly O</creatorcontrib><creatorcontrib>Arrigo, Patrizio</creatorcontrib><creatorcontrib>Demenkov, Pavel S</creatorcontrib><creatorcontrib>Kochetov, Alexey V</creatorcontrib><creatorcontrib>Ivanisenko, Vladimir A</creatorcontrib><creatorcontrib>Kolchanov, Nikolay A</creatorcontrib><creatorcontrib>Hofestädt, Ralf</creatorcontrib><title>Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches</title><title>Journal of integrative bioinformatics</title><addtitle>J Integr Bioinform</addtitle><description>Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particular, the techniques allowing the reconstruction of associative networks of various biological objects and events can be useful. In this publication, the combination of different techniques to create such a network associated with an abstract cell environment is discussed in order to gain insights into the functional as well as spatial interrelationships. It is shown that experimentally gained knowledge enriched with data warehouse content and text mining data can be used for the reconstruction and localization of a cardiovascular disease developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein).</description><subject>Cardiomyopathy, Dilated - metabolism</subject><subject>Cardiovascular Diseases - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Computational Biology - methods</subject><subject>Computer Graphics</subject><subject>Data Mining - methods</subject><subject>Databases, Protein</subject><subject>Female</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Information Storage and Retrieval</subject><subject>PubMed</subject><subject>Software</subject><subject>Systems Biology</subject><subject>User-Computer Interface</subject><issn>1613-4516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kM1OwzAMxyMkxKaxN0AoN06BpGnT9ogmvqQhdmBcK7dxtoy0GU3LGG_BG1NgWLJsWT_bf5uQM8EvI5nzq9Ji5Z1jG1uyiAvORJwdkbFQQrI4EWpEpiFs-GAyz_KUn5BRJLjKYiXH5OvFhh6c_YTO-oZCowcHtw82UG8o0ApabT19h1D1DlqqbUAIyH7Rx-ViIViLDjrUtLTe-ZWtwNEGu51vX2nl69I2tlnRDj86Wv_lP60aOqA7aHHt-4AUttvWQ7XGcEqODbiA00OckOXtzfPsns2f7h5m13O2HdR3LM8zpYYrhK5yk0ASRaiEkFKIJBWgMNI5GKMM8pTHRpg047FK5VBErlQeywm5-Js7LH7rMXRFbUOFzkGDg6QiVXEilUrVQJ4fyL6sURfb1tbQ7ov_L8pvP4V3JQ</recordid><startdate>20101111</startdate><enddate>20101111</enddate><creator>Sommer, Björn</creator><creator>Tiys, Evgeny S</creator><creator>Kormeier, Benjamin</creator><creator>Hippe, Klaus</creator><creator>Janowski, Sebastian J</creator><creator>Ivanisenko, Timofey V</creator><creator>Bragin, Anatoly O</creator><creator>Arrigo, Patrizio</creator><creator>Demenkov, Pavel S</creator><creator>Kochetov, Alexey V</creator><creator>Ivanisenko, Vladimir A</creator><creator>Kolchanov, Nikolay A</creator><creator>Hofestädt, Ralf</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20101111</creationdate><title>Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches</title><author>Sommer, Björn ; Tiys, Evgeny S ; Kormeier, Benjamin ; Hippe, Klaus ; Janowski, Sebastian J ; Ivanisenko, Timofey V ; Bragin, Anatoly O ; Arrigo, Patrizio ; Demenkov, Pavel S ; Kochetov, Alexey V ; Ivanisenko, Vladimir A ; Kolchanov, Nikolay A ; Hofestädt, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p210t-998660681dc9f5a522e6113311571a6e2d9aff6fe0704f1f78046739afe066943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cardiomyopathy, Dilated - metabolism</topic><topic>Cardiovascular Diseases - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Computational Biology - methods</topic><topic>Computer Graphics</topic><topic>Data Mining - methods</topic><topic>Databases, Protein</topic><topic>Female</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Information Storage and Retrieval</topic><topic>PubMed</topic><topic>Software</topic><topic>Systems Biology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sommer, Björn</creatorcontrib><creatorcontrib>Tiys, Evgeny S</creatorcontrib><creatorcontrib>Kormeier, Benjamin</creatorcontrib><creatorcontrib>Hippe, Klaus</creatorcontrib><creatorcontrib>Janowski, Sebastian J</creatorcontrib><creatorcontrib>Ivanisenko, Timofey V</creatorcontrib><creatorcontrib>Bragin, Anatoly O</creatorcontrib><creatorcontrib>Arrigo, Patrizio</creatorcontrib><creatorcontrib>Demenkov, Pavel S</creatorcontrib><creatorcontrib>Kochetov, Alexey V</creatorcontrib><creatorcontrib>Ivanisenko, Vladimir A</creatorcontrib><creatorcontrib>Kolchanov, Nikolay A</creatorcontrib><creatorcontrib>Hofestädt, Ralf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of integrative bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sommer, Björn</au><au>Tiys, Evgeny S</au><au>Kormeier, Benjamin</au><au>Hippe, Klaus</au><au>Janowski, Sebastian J</au><au>Ivanisenko, Timofey V</au><au>Bragin, Anatoly O</au><au>Arrigo, Patrizio</au><au>Demenkov, Pavel S</au><au>Kochetov, Alexey V</au><au>Ivanisenko, Vladimir A</au><au>Kolchanov, Nikolay A</au><au>Hofestädt, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches</atitle><jtitle>Journal of integrative bioinformatics</jtitle><addtitle>J Integr Bioinform</addtitle><date>2010-11-11</date><risdate>2010</risdate><volume>7</volume><issue>1</issue><spage>148</spage><epage>148</epage><pages>148-148</pages><eissn>1613-4516</eissn><abstract>Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particular, the techniques allowing the reconstruction of associative networks of various biological objects and events can be useful. In this publication, the combination of different techniques to create such a network associated with an abstract cell environment is discussed in order to gain insights into the functional as well as spatial interrelationships. It is shown that experimentally gained knowledge enriched with data warehouse content and text mining data can be used for the reconstruction and localization of a cardiovascular disease developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein).</abstract><cop>Germany</cop><pmid>21068463</pmid><doi>10.2390/biecoll-jib-2010-148</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1613-4516
ispartof Journal of integrative bioinformatics, 2010-11, Vol.7 (1), p.148-148
issn 1613-4516
language eng
recordid cdi_proquest_miscellaneous_764536676
source MEDLINE; De Gruyter Journals - Open Access; Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ)
subjects Cardiomyopathy, Dilated - metabolism
Cardiovascular Diseases - metabolism
Carrier Proteins - metabolism
Computational Biology - methods
Computer Graphics
Data Mining - methods
Databases, Protein
Female
Humans
Imaging, Three-Dimensional
Information Storage and Retrieval
PubMed
Software
Systems Biology
User-Computer Interface
title Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20and%20analysis%20of%20a%20cardio%20vascular%20disease-%20and%20MUPP1-related%20biological%20network%20combining%20text%20mining%20and%20data%20warehouse%20approaches&rft.jtitle=Journal%20of%20integrative%20bioinformatics&rft.au=Sommer,%20Bj%C3%B6rn&rft.date=2010-11-11&rft.volume=7&rft.issue=1&rft.spage=148&rft.epage=148&rft.pages=148-148&rft.eissn=1613-4516&rft_id=info:doi/10.2390/biecoll-jib-2010-148&rft_dat=%3Cproquest_pubme%3E764536676%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=764536676&rft_id=info:pmid/21068463&rfr_iscdi=true