Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches
Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particu...
Gespeichert in:
Veröffentlicht in: | Journal of integrative bioinformatics 2010-11, Vol.7 (1), p.148-148 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particular, the techniques allowing the reconstruction of associative networks of various biological objects and events can be useful. In this publication, the combination of different techniques to create such a network associated with an abstract cell environment is discussed in order to gain insights into the functional as well as spatial interrelationships. It is shown that experimentally gained knowledge enriched with data warehouse content and text mining data can be used for the reconstruction and localization of a cardiovascular disease developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein). |
---|---|
ISSN: | 1613-4516 |
DOI: | 10.2390/biecoll-jib-2010-148 |