A mutation of the mu transmembrane that disrupts endoplasmic reticulum retention. Effects on association with accessory proteins and signal transduction
The mu heavy chain has an unusually high content of hydroxyl-containing amino acids in its membrane-spanning region. We have examined the involvement of two of these hydrophilic residues in endoplasmic reticulum (ER) retention, interactions with Ig-alpha/Ig-beta, and transmembrane signaling. Neighbo...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1994-05, Vol.152 (9), p.4397-4406 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mu heavy chain has an unusually high content of hydroxyl-containing amino acids in its membrane-spanning region. We have examined the involvement of two of these hydrophilic residues in endoplasmic reticulum (ER) retention, interactions with Ig-alpha/Ig-beta, and transmembrane signaling. Neighboring tyrosine and serine residues were mutated to either phenylalanine and alanine (mutant YS/FA) or valine and valine (mutant YS/VV). Membrane Ig (mIgM) molecules containing these mutant mu chains were expressed on the surface of transfected B lymphoma cells. Anti-Ig-induced signaling by the YS/FA mutant mIgM was equivalent to wild-type (wt) mIgM, whereas signaling by the YS/VV mutant mIgM was notably diminished. Association between mutant YS/VV mIgM and Ig-alpha/Ig-beta was detectable but reduced in comparison to YS/FA or wt mIgM. Signaling by YS/VV mutant mIgM appeared to involve Ig-alpha/Ig-beta, because these proteins were tyrosine phosphorylated on receptor cross-linking. When YS/VV and wt mu chains were cotransfected with light chains into nonlymphoid cells, mutant mIgM was expressed at the cell surface in the absence of Ig-alpha/Ig-beta, whereas wt mIgM was not. These data suggest that the mutated residues contribute to ER retention and directly or indirectly to association with Ig-alpha/Ig-beta. Moreover, ER retention can be disrupted without preventing functional association with Ig-alpha/Ig-beta. In addition, these data indicate that the hydroxyl groups of the mutated residues are not required for functional association between mu and Ig-alpha/Ig-beta because their removal did not reduce the ability of the YS/FA mutant mIgM to associate with accessory proteins or to participate in signal transduction. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.152.9.4397 |