Movement aftereffect of bi-vectorial transparent motion

Two moving random-pixel arrays (RPAs) were presented simultaneously in the same target field. These RPAs are perceived as two superimposed transparent moving sheets. Although two directions are perceived simultaneously during stimulus presentation, the movement aftereffect (MAE) is unidirectional. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) 1994-02, Vol.34 (3), p.349-358
Hauptverfasser: Verstraten, Frans A.J., Fredericksen, R. Eric, Van De Grind, Wim A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two moving random-pixel arrays (RPAs) were presented simultaneously in the same target field. These RPAs are perceived as two superimposed transparent moving sheets. Although two directions are perceived simultaneously during stimulus presentation, the movement aftereffect (MAE) is unidirectional. The visual system averages both motion signals in the MAE. For motion vectors of equal magnitude and perpendicular direction the MAE direction is the inverse of the sum of both vectors. In the first experiment we measured perceived direction of the MAE of transparent motion for a range of speed combinations. Results indicate that vector summation only predicts the correct MAE direction for combinations of equal speeds. It is suggested that the direction of the MAE of transparent motion is a resultant of the weighted summation of the component inducing vectors. The question then arises what determines the weighting factors. Directional sensitivity and MAE duration of the individual vectors under transparent conditions were measured and used to weigh the vectors and predict the MAE direction of transparent motion. Statistical analyses showed that MAE duration is a better basis to determine the weighting factors predicting the direction of the MAE of transparent motion than component sensitivity. The direction of the MAE of transparent motion thus seems to be determined by the amount of adaptation to the component vectors as reflected by MAE duration. The results suggest that this gain control cannot be located in the individual motion detectors and must be situated at or after some subsequent cooperation stage of the human motion analysis system.
ISSN:0042-6989
1878-5646
DOI:10.1016/0042-6989(94)90093-0